【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8 …,頂點(diǎn)依次為A1,A2,A3,A4,A5,…,則頂點(diǎn)A55的坐標(biāo)是( )
A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在武漢教育電視臺組織的一次漢字聽寫大賽中,10名參賽選手得分情況如下:
人數(shù) | 3 | 4 | 2 | 1 |
分?jǐn)?shù) | 80 | 85 | 90 | 95 |
那么這10名選手所得分?jǐn)?shù)的中位數(shù)和眾數(shù)分別是( )
A. 85和85 B. 85.5和85 C. 85和4 D. 85.5和4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,、、分別平分的外角、內(nèi)角、外角.以下結(jié)論:①:②:③:④.其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,點(diǎn)M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M,N是線段AB的勾股分割點(diǎn).
請解決下列問題:
(1)已知點(diǎn)M,N是線段AB的勾股分割點(diǎn),且BN>MN>AM.若AM=2,MN=3,求BN的長;
(2)如圖2,若點(diǎn)F、M、N、G分別是AB、AD、AE、AC邊上的中點(diǎn),點(diǎn)D,E是線段BC的勾股分割點(diǎn),且EC>DE>BD,求證:點(diǎn)M,N是線段FG的勾股分割點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是( )
①AD是∠BAC的平分線;
②∠ADC=60°;
③點(diǎn)D在AB的中垂線上;
④
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用等式的性質(zhì)1,將等式3x=10+2x進(jìn)行變形,正確的是( )
A. 2x=10
B. x=10
C. -10=x
D. 3x=2x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(a+1)x2+x+a2﹣1=0的一個(gè)根是0,則a的值為( )
A. 1 B. ﹣1 C. ±1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC⊥CB,垂足為C點(diǎn),AC=CB=8cm,點(diǎn)Q是AC的中點(diǎn),動點(diǎn)P由B點(diǎn)出發(fā),沿射線BC方向勻速移動.點(diǎn)P的運(yùn)動速度為2cm/s.設(shè)動點(diǎn)P運(yùn)動的時(shí)間為ts.為方便說明,我們分別記三角形ABC面積為S,三角形PCQ的面積為S1,三角形PAQ的面積為S2,三角形ABP的面積為S3.
(1)S3= cm2(用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)P運(yùn)動幾秒,S1=S,說明理由;
(3)請你探索是否存在某一時(shí)刻,使得S1=S2=S3?若存在,求出t值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com