關(guān)于x的一元二次方程x2-4x+c=0有實(shí)數(shù)根,且c為正整數(shù)。
(1)求c的值;
(2)若此方程的兩根均為整數(shù),在平面直角坐標(biāo)系xOy中,拋物線y=x2-4x+c與x軸交于A、B兩點(diǎn)(A在B左側(cè)),與y軸交于點(diǎn)C,點(diǎn)P為對(duì)稱軸上一點(diǎn),且四邊形OBPC為直角梯形,求PC的長(zhǎng);
(3)將(2)中得到的拋物線沿水平方向平移,設(shè)頂點(diǎn)D的坐標(biāo)為(m,n),當(dāng)拋物線與(2)中的直角梯形OBPC只有兩個(gè)交點(diǎn),且一個(gè)交點(diǎn)在PC邊上時(shí),直接寫(xiě)出m的取值范圍。
解:(1)關(guān)于x的一元二次方程x2-4x+c=0有實(shí)數(shù)根,
∴△=16-4c≥0,
∴c≤4,
又∵c為正整數(shù),
∴c=1,2,3,4;
(2)∵方程兩根均為整數(shù),
∴c=3,4,
又∵拋物線與x軸交于A、B兩點(diǎn),
∴c=3,
∴拋物線的解析式為y=x2-4x+3,
∴拋物線的對(duì)稱軸為直線x=2,
∵四邊形OBPC為直角梯形,且∠COB=90°,
∴PC// BO,
∵P點(diǎn)在對(duì)稱軸上,
∴PC=2;
(3)-2<m≤0或2<m≤4。 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•北侖區(qū)二模)若關(guān)于x的一元二次方程a(x+m)2=3兩個(gè)實(shí)根為x1=-1,x2=3,則拋物線y=a(x+m-2)2-3與x軸的交點(diǎn)橫坐標(biāo)分別是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是關(guān)于x的一元二次方程,則m=
65
2
65
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•沈陽(yáng))若關(guān)于x的一元二次方程x2+4x+a=0有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是
a<4
a<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蘭州一模)若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=-
b
a
,x1•x2=
c
a
,把它們稱為一元二次方程根與系數(shù)關(guān)系定理,請(qǐng)利用此定理解答一下問(wèn)題:
已知x1,x2是一員二次方程(m-3)x2+2mx+m=0的兩個(gè)實(shí)數(shù)根.
(1)是否存在實(shí)數(shù)m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,請(qǐng)你說(shuō)明理由;
(2)若|x1-x2|=
3
,求m的值和此時(shí)方程的兩根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•瀘州)若關(guān)于x的一元二次方程kx2-2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案