小明在一次高爾夫球的練習中,在某處擊球,其飛行路線滿足拋物線y=-數(shù)學公式x2+2x,其中y(m)是球的飛行高度,x(m)是球飛出的水平距離,結(jié)果球離球洞的水平距離還有2m.
(1)求拋物線的頂點坐標;
(2)求出球飛行的最大水平距離;
(3)若小明第二次仍從此處擊球,使其最大高度不變,而球剛好進洞,則球飛行的路線滿足拋物線的解析式是什么?

解:(1)由題意得

把x=4代入

解得y=4
∴拋物線頂點坐標為(4,4).

(2)
x1=0,x2=8,
∴球飛行的最大水平距離為8m.

(3)根據(jù)(1)當x=4時球的最大高度為4,此時球剛好進洞,
即(10,0),頂點為(5,4)
∴100a+10b=0,25a+5b=4

∴球飛行的路線滿足拋物線的解析式為
分析:(1)用配方法或公式法求二次函數(shù)的頂點坐標;
(2)令y=0,解出x1,x2的值,則球飛行的最大水平距離為|x1-x2|;
(3)用待定系數(shù)法求出二次函數(shù)的解析式.
點評:本題考查了用待定系數(shù)法求函數(shù)解析式的方法,同時還考查了一元二次方程的解法和求二次函數(shù)的頂點坐標等知識,難度不大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,小明在一次高爾夫球爭霸賽中,從山坡下O點打出一球向球洞A點飛去,球的飛行路線為拋物線,如果不考慮空氣阻力,當球達到最大水平高度12米時,球移動的水平距離為9米.已知山坡OA與水平方向OC的夾角為30°,O、A兩點相距8
3
米.
(1)求出點A的坐標及直線OA的解析式;
(2)求出球的飛行路線所在拋物線的解析式;
(3)判斷小明這一桿能否把高爾夫球從O點直接打入球洞A點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小明在一次高爾夫球的練習中,在某處擊球,其飛行路線滿足拋物精英家教網(wǎng)線y=-
14
x2+2x,其中y(m)是球的飛行高度,x(m)是球飛出的水平距離,結(jié)果球離球洞的水平距離還有2m.
(1)求拋物線的頂點坐標;
(2)求出球飛行的最大水平距離;
(3)若小明第二次仍從此處擊球,使其最大高度不變,而球剛好進洞,則球飛行的路線滿足拋物線的解析式是什么?

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年北京市房山區(qū)九年級(上)期中數(shù)學試卷(解析版) 題型:解答題

小明在一次高爾夫球的練習中,在某處擊球,其飛行路線滿足拋物線y=-x2+2x,其中y(m)是球的飛行高度,x(m)是球飛出的水平距離,結(jié)果球離球洞的水平距離還有2m.
(1)求拋物線的頂點坐標;
(2)求出球飛行的最大水平距離;
(3)若小明第二次仍從此處擊球,使其最大高度不變,而球剛好進洞,則球飛行的路線滿足拋物線的解析式是什么?

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年北京市通州區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

小明在一次高爾夫球的練習中,在某處擊球,其飛行路線滿足拋物線y=-x2+2x,其中y(m)是球的飛行高度,x(m)是球飛出的水平距離,結(jié)果球離球洞的水平距離還有2m.
(1)求拋物線的頂點坐標;
(2)求出球飛行的最大水平距離;
(3)若小明第二次仍從此處擊球,使其最大高度不變,而球剛好進洞,則球飛行的路線滿足拋物線的解析式是什么?

查看答案和解析>>

同步練習冊答案