已知拋物線C1的表達式是y=2x2-4x+5,拋物線C2與拋物線C1關(guān)于x軸對稱,試確定拋物線C2的表達式.

答案:
解析:

y=-2x24x5


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃石)已知拋物線C1的函數(shù)解析式為y=ax2+bx-3a(b<0),若拋物線C1經(jīng)過點(0,-3),方程ax2+bx-3a=0的兩根為x1,x2,且|x1-x2|=4.
(1)求拋物線C1的頂點坐標.
(2)已知實數(shù)x>0,請證明x+
1
x
≥2,并說明x為何值時才會有x+
1
x
=2.
(3)若將拋物線先向上平移4個單位,再向左平移1個單位后得到拋物線C2,設(shè)A(m,y1),B(n,y2)是C2上的兩個不同點,且滿足:∠AOB=90°,m>0,n<0.請你用含m的表達式表示出△AOB的面積S,并求出S的最小值及S取最小值時一次函數(shù)OA的函數(shù)解析式.
(參考公式:在平面直角坐標系中,若P(x1,y1),Q(x2,y2),則P,Q兩點間的距離為
(x2-x1)2+(y2-y1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1的頂點坐標是D(1,4),且經(jīng)過點C(2,3),又與x軸交于點A、E(點A在點E左邊),與y軸交于點B.
(1)拋物線C1的表達式是
y=-x2+2x+3
y=-x2+2x+3
;
(2)四邊形ABDE的面積等于
9
9
;
(3)問:△AOB與△DBE相似嗎?并說明你的理由;
(4)設(shè)拋物線C1的對稱軸與x軸交于點F.另一條拋物線C2經(jīng)過點E(C2與C1不重合),且頂點為M(a,b),對稱軸與x軸交于點G,并且以M、G、E為頂點的三角形與以點D、E、F為頂點的三角形全等,求a、b的值.(只需寫出結(jié)果,不必寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年上海市普陀區(qū)九年級(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線C1的頂點坐標是D(1,4),且經(jīng)過點C(2,3),又與x軸交于點A、E(點A在點E左邊),與y軸交于點B.
(1)拋物線C1的表達式是______;
(2)四邊形ABDE的面積等于______;
(3)問:△AOB與△DBE相似嗎?并說明你的理由;
(4)設(shè)拋物線C1的對稱軸與x軸交于點F.另一條拋物線C2經(jīng)過點E(C2與C1不重合),且頂點為M(a,b),對稱軸與x軸交于點G,并且以M、G、E為頂點的三角形與以點D、E、F為頂點的三角形全等,求a、b的值.(只需寫出結(jié)果,不必寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省黃石市中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線C1的函數(shù)解析式為y=ax2+bx-3a(b<0),若拋物線C1經(jīng)過點(0,-3),方程ax2+bx-3a=0的兩根為x1,x2,且|x1-x2|=4.
(1)求拋物線C1的頂點坐標.
(2)已知實數(shù)x>0,請證明x+≥2,并說明x為何值時才會有x+=2.
(3)若將拋物線先向上平移4個單位,再向左平移1個單位后得到拋物線C2,設(shè)A(m,y1),B(n,y2)是C2上的兩個不同點,且滿足:∠AOB=90°,m>0,n<0.請你用含m的表達式表示出△AOB的面積S,并求出S的最小值及S取最小值時一次函數(shù)OA的函數(shù)解析式.
(參考公式:在平面直角坐標系中,若P(x1,y1),Q(x2,y2),則P,Q兩點間的距離為

查看答案和解析>>

同步練習(xí)冊答案