【題目】如圖,直線與坐標(biāo)軸分別交于點(diǎn),與直線交于點(diǎn)是線段上的動(dòng)點(diǎn),連接,若是等腰三角形,則的長為___________.
【答案】2或或4
【解析】
先求出直線與直線交點(diǎn)C的坐標(biāo),若使是等腰三角形,分三種情況討論,即OQ=CQ或OC=OQ或OC=CQ,在直角三角形中利用勾股定理,根據(jù)等腰三角形的性質(zhì)即可求出OQ.
①如圖,當(dāng)OQ=CQ時(shí),過點(diǎn)C作CE⊥OA于點(diǎn)E,
直線與直線交于點(diǎn)C,
得x=2,
y=x=2
∴C(2,2)
設(shè)OQ=CQ=x,QE=2-x
在Rt△CEQ中
解得x=2
②當(dāng)OC=OQ時(shí),過點(diǎn)C作CE⊥OA于點(diǎn)E,C(2,2)
在Rt△CEO中,
OC=
③當(dāng)OC=CQ時(shí), 過點(diǎn)C作CE⊥OA于點(diǎn)E
∵OC=CQ
∴OE=EQ=2
∴OQ=2OE=4
綜上所示,若是等腰三角形,OQ的長為2或或4
故答案為:2或或4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB交CD于點(diǎn)O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,則∠AOF等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊AB上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),連接DE,點(diǎn)A關(guān)于直線DE的對(duì)稱點(diǎn)為F,連接EF并延長交BC于點(diǎn)G,連接DG,過點(diǎn)E作EH⊥DE交DG的延長線于點(diǎn)H,連接BH.
(1)求證:GF=GC;
(2)用等式表示線段BH與AE的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次中學(xué)生田徑運(yùn)動(dòng)會(huì)上,根據(jù)參加男子跳高初賽的運(yùn)動(dòng)員的成績(單位:m),繪制出如下的統(tǒng)計(jì)圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)圖1中a的值為 ;
(Ⅱ)求統(tǒng)計(jì)的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)這組初賽成績,由高到低確定9人進(jìn)入復(fù)賽,請直接寫出初賽成績?yōu)?.65m的運(yùn)動(dòng)員能否進(jìn)入復(fù)賽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B(a,b)在第一象限,過B作BA⊥y軸于A,過B作BC⊥x軸于C,且實(shí)數(shù)a、b滿足(a-b-2)2+|2a+b-10|≤0,含45角的Rt△DEF的一條直角邊DF與x軸重合,DE⊥x軸于D,點(diǎn)F與坐標(biāo)原點(diǎn)重合,DE=DF=3.△DEF從某時(shí)刻開始沿著坐標(biāo)軸以1個(gè)單位長度每秒的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)求點(diǎn)B的坐標(biāo);
(2)若△DEF沿著y軸負(fù)方向運(yùn)動(dòng),連接AE,EG平分∠AEF,EH平分∠AED,當(dāng)EG∥DF時(shí),求∠HEF的度數(shù);
(3)若△DEF沿著x軸正方向運(yùn)動(dòng),在運(yùn)動(dòng)過程中,記△AEF與長方形OABC重疊部分的面積為S,當(dāng)0<t≤4,S=時(shí),請你求出運(yùn)動(dòng)時(shí)間t.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)在上,于點(diǎn),的延長線交的延長線于點(diǎn),則下列結(jié)論中錯(cuò)誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,F、G是AD邊上的兩個(gè)點(diǎn),且FC平分∠BCD,GB平分∠ABC,F(xiàn)C與GB交于點(diǎn)E.
①AB=AG;②連接BF、CG,則四邊形BFGC為等腰梯形;③AF=DG;④△ABG∽△DCF.
以上四個(gè)結(jié)論中一定成立的有( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com