【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(0,3),(x1,0),其中,2<x1<3,對稱軸為x=1,則下列結(jié)論:①2a﹣b=0; ②x(ax+b)≤a+b;③方程ax2+bx+c﹣3=0的兩根為x1'=0,x2'=2;④﹣3<a<﹣1.其中正確的是( 。
A. ②③④B. ①②③C. ②④D. ②③
【答案】D
【解析】
利用拋物線對稱軸得到b=﹣2a,則可對①進行判斷;利用二次函數(shù)的最值問題得到x=1時,y的值最大,從而可對②進行判斷;利用拋物線的對稱性得到點(0,3)關(guān)于直線x=1的對稱點的坐標為(1,3),即x=0或x=1時,ax2+bx+c=3,則可對③進行判斷;利用2<x1<3,則當x=3時,9a+3b+c<0,把c=3,b=﹣2a代入得到a的范圍,則可對④進行判斷.
∵拋物線的對稱軸為直線x=﹣=1,
∴b=﹣2a,即2a+b=0,所以①錯誤;
∵x=1時,y的值最大,
∴ax2+bx+c<a+b+c,
即x(ax+b)≤a+b,所以②正確;
∵點(0,3)關(guān)于直線x=1的對稱點的坐標為(2,3),
即x=0或x=2時,ax2+bx+c=3,
∴方程ax2+bx+c﹣3=0的兩根為x1'=0,x2'=2,所以③正確;
∵2<x1<3,
∴當x=3時,y<0,
即9a+3b+c<0,
而c=3,b=﹣2a,
∴9a﹣6a+3<0,解得a<﹣1,所以④錯誤.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形A1ABC的邊長為1,正方形A2A1B1C1邊長為2.正方形A3A2B2C2邊長為4,…依此規(guī)律繼續(xù)做正方形An+1AnBnn,其中點A,A1,A2,A3,…在同一條直線上,連接AC1交A1B1于點D1,連接A1C2交A2B2于點D2,…,若記△AA1D1的面積為S1,△A1A2D2的面積為S2…,△An﹣1AnDn的面積為Sn,則S2019=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABB1,△A1B1B2,…,△An﹣2Bn﹣2Bn﹣1,△An﹣1Bn﹣1Bn是n個全等的等腰三角形,其中AB=2,BB1=1,底邊BB1,B1B2,…,Bn﹣2Bn﹣1,Bn﹣1Bn在同一條直線上,連接ABn交An﹣2Bn﹣1于點P,則PBn﹣1的值為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若一個四邊形能被其中的一條對角線分割成兩個相似三角形,則稱這個四邊形為“友誼四邊形”.我們熟知的平行四邊形就是“友誼四邊形”,
(1)如圖1,在4×4的正方形網(wǎng)格中有一個Rt△ABC,請你在網(wǎng)格中找格點D,使得四邊形ABCD是被AC分割成的“友誼四邊形”,(要求畫出點D的2種不同位置)
(2)如圖2,BD平分∠ABC,BD=4,BC=8,四邊形ABCD是被BD分割成的“友誼四邊形”,求AB長;
(3)如圖3,圓內(nèi)接四邊形ABCD中,∠ABC=60,點E是的中點,連結(jié)BE交CD于點F,連結(jié)AF,∠DAF=30°
①求證:四邊形ABCF是“友誼四邊形”;
②若△ABC的面積為6,求線段BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了預(yù)防“甲型H1N1”,某校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時,求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關(guān)系式呢?
(2)研究表明,當空氣中每立方米的含藥量低于1.6mg時,生方可進教室,那么從消毒開始,至少需要幾分鐘后,生才能進入教室?
(3)研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,臺風中心位于點A,并沿東北方向AC移動,已知臺風移動的速度為50千米/時,受影響區(qū)域的半徑為130千米,B市位于點A的北偏東75°方向上,距離A點240千米處.
(1)說明本次臺風會影響B市;
(2)求這次臺風影響B市的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,點E在AB上,點F在CD上,以EF為折痕,將此矩形折疊,使點A和點C重合,點D和點G重合.
(1)求證:四邊形AECF是菱形.
(2)若AB=5,AD=3,則菱形AECF的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,分別以點A(2,3)、點B(3,4)為圓心,以1、3為半徑作⊙A、⊙B,M,N分別是⊙A、⊙B上的動點,P為x軸上的動點,則PM+PN的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD交于點O,以OB為直徑畫圓M,過D作⊙M的切線,切點為N,分別交AC、BC于點E、F,已知AE=5,CE=3,則DF的長是( )
A. 3B. 4C. 4.8D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com