如圖1,已知A(3,0)、B(4,4)、原點O(0,0)在拋物線y=ax2+bx+c (a≠0)上.

(1)求拋物線的解析式.
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個交點D,求m的值及點D的坐標.
(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點P的坐標(點P、O、D分別與點N、O、B對應)

(1)y=x2-3x
(2)m=4 點D的坐標為(2,-2)
(3)點P的坐標為(-,-)和(

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.
(1)若花園的面積為192m2,  求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知關于的一元二次方程有實數(shù)根,為正整數(shù).
(1)求的值;
(2)當此方程有兩個不為0的整數(shù)根時,將關于的二次函數(shù)的圖象向下平移2個單位,求平移后的函數(shù)圖象的解析式;
(3)在(2)的條件下,將平移后的二次函數(shù)圖象位于軸左側的部分沿軸翻折,圖象的其余部分保持不變,得到一個新的圖象G.當直線與圖象G有3個公共點時,請你直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直角梯形OABC中,AB∥OC,點A坐標為(0,6),點C坐標為(3,0),BC=,一拋物線過點A、B、 C.
(1)填空:點B的坐標為   
(2)求該拋物線的解析式;
(3)作平行于x軸的直線與x軸上方的拋物線交于點E 、F,以EF為直徑的圓恰好與x軸相切,求該圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點(0,- 3),且頂點坐標為(1,- 4).求這個解析式。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,O為坐標原點,點A、B的坐標分別為(8,0)、(0,6).動點Q從點O、動點P從點A同時出發(fā),分別沿著OA方向、AB方向均以1個單位長度/秒的速度勻速運動,運動時間為t(秒)(0<t≤5).以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為C、D,連接CD、QC.
(1)求當t為何值時,點Q與點D重合?
(2)設△QCD的面積為S,試求S與t之間的函數(shù)關系式,并求S的最大值;
(3)若⊙P與線段QC只有一個交點,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線y=與x軸交于點A,與y軸交于點C,以AC為直徑作⊙M,點是劣弧AO上一動點(點與不重合).拋物線y=-經(jīng)過點A、C,與x軸交于另一點B,

(1)求拋物線的解析式及點B的坐標;
(2)在拋物線的對稱軸上是否存在一點P,是︱PA—PC︱的值最大;若存在,求出點P的坐標;若不存在,請說明理由。
(3)連于點,延長,使,試探究當點運動到何處時,直線與⊙M相切,并請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,矩形ABCD的兩邊長AB=18 cm,AD=4 cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2 cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1 cm的速度勻速運動.設運動時間為x秒,△PBQ的面積為y(cm2).

(1)求y關于x的函數(shù)關系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線與x軸交于A、B兩點,點C是拋物線在第一象限內(nèi)部分的一個動點,點D是OC的中點,連接BD并延長,交AC于點E.

(1)說明:;
(2)當點C、點A到y(tǒng)軸距離相等時,求點E坐標.
(3)當的面積為時,求的值.

查看答案和解析>>

同步練習冊答案