【題目】如圖,在平面直角坐標系中,正比例函數(shù)與反比例函數(shù)的圖象交于,兩點,點的縱坐標為,軸于點,連接

求反比例函數(shù)的解析式;

的面積;

若點是反比例函數(shù)圖象上的一點,且滿足的面積是的面積的倍,請直接寫出點的坐標.

【答案】(1);(2)8;(3)點坐標為

【解析】

(1)把A點縱坐標代入正比例函數(shù)可求得A點坐標,再把點A的坐標代入反比例函數(shù)解析式可求得k,從而得反比例函數(shù)解析式;(2)根據(jù)、關(guān)于原點對稱,可求得點坐標為,再由即可求得的面積;(3)已知△PAC的面積是△ABC的面積的2倍,即可求得根據(jù)三角形的面積公式求得到的距離為,即可得的橫坐標為由此即可求得P點坐標.

∴S_(△PAC)=16,

∵AC=4,

代入中,得=2,
坐標為,
在反比例函數(shù)的圖象上,
,
反比例函數(shù)的解析式為;

,

、關(guān)于原點對稱,
點坐標為,
的距離為,

的面積是的面積的倍,
,
,
的距離為
的橫坐標為,
點坐標為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于的方程

是方程的一個根,求的值和方程的另一根;

為何實數(shù)時,方程有實數(shù)根;

,是方程的兩個根,且,試求實數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,多項式的因式分解就是將一個多項式化成幾個整式的積的形式.通過因式分解,我們常常將一個次數(shù)比較高的多項式轉(zhuǎn)化成幾個次數(shù)較低的整式的積,來達到降次化簡的目的.這個思想可以引領(lǐng)我們解決很多相對復(fù)雜的代數(shù)問題.

例如:方程就可以這樣來解:

解:原方程可化為:

所以或者

解方程得:

所以原方程的解:,

根據(jù)你的理解,結(jié)合所學知識,解決以下問題:

1)解方程:;

2)已知的三邊為4x、y,請你判斷代數(shù)式的值的符號.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個函數(shù)的解析式等于另兩個函數(shù)解析式的和,則這個函數(shù)稱為另兩個函數(shù)的“生成函數(shù)”,F(xiàn)有關(guān)于x的兩個二次函數(shù)y1、y2,且y1=a(x-m)2+4(m>0),y1、y2的“生成函數(shù)”為:y=x2+4x+14;當x=m時,y2=15;二次函數(shù)y2的圖象的頂點坐標為(2,k)。

(1)求m的值;

(2)求二次函數(shù)y1、y2的解析式。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的頂點與坐標原點重合,,,當點在反比例函數(shù)圖象上移動時,點坐標滿足的函數(shù)解析式是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某中學準備在校園里利用圍墻的一段,再砌三面墻,圍成一個矩形花園ABCD(圍墻MN最長可利用25m),現(xiàn)在已備足可以砌50m長的墻的材料,試設(shè)計一種砌法,使矩形花園的面積為300m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠ABC=∠DCB,添加一個條件使△ABC≌△DCB,下列添加的條件不能使△ABC≌△DCB的是(  )

A. A=∠D B. ABDC C. ACDB D. OBOC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OP平分∠AOB,PAOA、PBOB,垂足分別為A、B,下列結(jié)論成立的是( )

PA=PB;②PO平分∠APB;③OA=OB;④AB垂直平分OP

A.①③B.①②③C.②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】年是我國實現(xiàn)第一個百年目標,全國建成小康社會的收官之年,早在十六大我黨就提出加快推進社會主義現(xiàn)代化,力爭國民生產(chǎn)總值到年比年翻兩番,要實現(xiàn)這一目標,以十年為單位計算,求每十年的國民生產(chǎn)總值的增長率是多少?

查看答案和解析>>

同步練習冊答案