【題目】我們知道,任意一個有理數(shù)與無理數(shù)的和為無理數(shù),任意一個不為零的有理數(shù)與一個無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果mx+n=0,其中m、n為有理數(shù),x為無理數(shù),那么m=0n=0.

1)如果,其中a、b為有理數(shù),那么a= ,b= .

2)如果,其中ab為有理數(shù),求a+2b的值.

【答案】1,;(2.

【解析】

1a,b是有理數(shù),則a-2,b+3都是有理數(shù),根據(jù)如果mx+n=0,其中m、n為有理數(shù),x為無理數(shù),那么m=0n=0即可確定;

2)首先把已知的式子化成mx+n=0,(其中a、b為有理數(shù),x為無理數(shù))的形式,根據(jù)m=0n=0即可求解.

解:(1整理得:

a、b為有理數(shù),則a-2,b+3都是有理數(shù),而為無理數(shù),根據(jù)題意如果mx+n=0,其中mn為有理數(shù),x為無理數(shù),那么m=0n=0,

對比形式可知m=0n=0,則;

2)整理,得:,

a、b為有理數(shù),同(1)中理可得:,

解得:

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,各超市購物市民絡(luò)繹不絕,呈現(xiàn)濃濃節(jié)日氣氛.百姓超市320元購進(jìn)一批葡萄,上市后很快脫銷,該超市又用680元購進(jìn)第二批葡萄,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但進(jìn)價每千克多了0.2元.

1)該超市第一批購進(jìn)這種葡萄多少千克?

2)如果這兩批購進(jìn)的葡萄售價相同,且全部售完后利潤率不低于20%,那么每千克葡萄的售價應(yīng)該至少定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級男生的體能情況,體育老師隨機(jī)抽取部分男生進(jìn)行引體向上測試,并對成績進(jìn)行了統(tǒng)計,繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖.

1)本次抽測的男生有   人,抽測成績的中位數(shù)是   

2)請你將圖2的統(tǒng)計圖補充完整,這部分男生的平均成績約為多少?寫出計算過程.

3)若規(guī)定引體向上5次以上(含5次)為體能達(dá)標(biāo),則該校350名九年級男生中估計有多少人體能達(dá)標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABE中,E 90,AC BAE的角平分線。

1)若B 30,求BAC的度數(shù);

2)若 D BC的中點,ABC的面積為24,CD3,求AE的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料并回答下列問題:

在平面直角坐標(biāo)系 xOy 中, P x, y 經(jīng)過 f 變換得到點 P x, y , 變換記作f x, y x, y, 其中,例如,當(dāng)a=1,b=1時,則點(-1,2)經(jīng)過f變換,,即.

1)當(dāng) a 1, b 1時,則 f 0, 1 .

2)若 f 2,3 4, 2 ,求 a b 的值.

3)若象限內(nèi)點 P x, y 的橫縱坐標(biāo)滿足 y 3x ,點 P 經(jīng)過 f 變換得到點 P x, y,若點 P 與點 P重合,求 a b 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線PA⊙OA、B兩點,CD⊙O的切線,切點且C,過點CCD⊥PAD,若AD:DC=1:3,AB=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18 ℃的條件下生長最快的新品種.如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線y=的一部分.請根據(jù)圖中信息解答下列問題:

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18 ℃的時間有多少小時?

(2)求k的值;

(3)當(dāng)x=16時,大棚內(nèi)的溫度約為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GHHE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).

1)四邊形EFGH的形狀是什么,并證明你的結(jié)論.

2)當(dāng)四邊形ABCD的對角線滿足什么條件時,四邊形EFGH是矩形;并利用你給的條件加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若果∠12,那么添加下列任何一個條件:(1,(2,(3BD,(4CAED, 其中能判定ABC∽△ADE的個數(shù)為

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案