【題目】中,點,,依次是邊的四等分點,點,依次是邊的四等分點,分別以,,為邊向下剪三個寬相等的矩形,如圖所示.若圖中空白部分的面積和為,則圖中陰影部分的面積和是(

A.B.C.D.

【答案】B

【解析】

過點ADG的垂直線AK, 三個寬相等的矩形寬度設為h,利用角角邊可證得

,從而得出BQ=FO=EP=DKNC=SM=RH=KG, AK=DP=EO=FQ=h AK=GR=HS=MN=h

因空白部分的面積和為8,所以

得出,可求得陰影矩形FQNM面積、矩形EOSH面積、矩形DPRG面積,即可求得陰影部分面積=陰影矩形FQNM面積+矩形EOSH面積+矩形DPRG面積.

過點ADG的垂直線AK, 三個寬相等的矩形寬度設為h

,依次是邊的四等分點,點,依次是邊的四等分點

∴AD=DE=EF=FB ,AG=GH=HM=MC

四邊形FQNM、四邊形EOSH、四邊形DPRG為矩形且高相等

,

,

∵AD=DE=EF=FBAG=GH=HM=MC

,,

,

,

∴BQ=FO=EP=DKNC=SM=RH=KG,AK=DP=EO=FQ=h ,AK=GR=HS=MN=h ,

圖中空白部分的面積和為8

∵BQ=FO=EP=DKNC=SM=RH=KG

陰影矩形FQNM面積為:

= ==12

同理,矩形EOSH面積為:

===8

矩形DPRG面積為:

===4

陰影部分面積=陰影矩形FQNM面積+矩形EOSH面積+矩形DPRG面積=12+8+4=24

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑作OBC于點D,過點DAC的垂線交AC于點E,交AB的延長線于點F

1)求證:DEO相切;

2)若CDBFAE3,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】老師隨機抽查了本學期學生讀課外書冊數(shù)的情況,繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.

(1)求條形圖中被遮蓋的數(shù),并寫出冊數(shù)的中位數(shù);

(2)在所抽查的學生中隨機選一人談讀書感想,求選中讀書超過5冊的學生的概率;

(3)隨后又補查了另外幾人,得知最少的讀了6冊,將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊數(shù)的中位數(shù)沒改變,則最多補查了   人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展陽光體育活動,決定開設乒乓球、籃球、跑步、跳繩這四種運動項目,學生只能選擇其中一種,為了解學生喜歡哪一種項目,隨機抽取了部分學生進行調查,并將調查結果繪制成兩張不完整的統(tǒng)計圖,請你結合圖中的信息解答下列問題:

(1)樣本中喜歡籃球項目的人數(shù)百分比是 ;其所在扇形統(tǒng)計圖中的圓心角的度數(shù)是 ;

(2)把條形統(tǒng)計圖補畫完整并注明人數(shù);

(3)已知該校有1000名學生,根據(jù)樣本估計全校喜歡乒乓球的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ADBC,CEAB,垂足分別為DE,AD、CE交于點H,請你添加一個適當?shù)臈l件:_____,使AEH≌△CEB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某單位需招聘一名技術員,對甲、乙、丙三名候選人進行了筆試和面試兩項測試,其成績如下表所示.根據(jù)錄用程序,該單位又組織了名人員對三人進行民主評議,其得票率如扇形圖所示,每票分(沒有棄權票。每人只能投票)

測試項目

測試成績

筆試

面試

1)請算出三人的民主評議得分.

2)該單位將筆試、面試、民主評議三項得分按確定綜合成績,且民主評議得分低于分不錄取,誰將被錄用?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點Amm+3),點Bn,n3)是反比例函數(shù)yk0)在第一象限的圖象上的兩點,連接AB.將直線AB向下平移3個單位得到直線l,在直線l上任取一點C,則△ABC的面積為(

A.B.6C.D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,我們把橫、縱坐標都是整數(shù)的點叫做整點.已知點A(0,4),點B是x軸正半軸上的整點,記△AOB內部(不包括邊界)的整點個數(shù)為m.當點B的橫坐標為4時,m的值是_____.當點B的橫坐標為4n(n為正整數(shù))時,m=_____(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年某水果加工公司分兩次采購了一批桃子,第一次費用為25萬元,第二次費用為30萬元.已知第一次采購時每噸桃子的價格比去年的平均價格上漲了0.1萬元,第二次采購時每噸桃子的價格比去年的平均價格下降了0.1萬元,第二次采購的數(shù)量是第一次采購數(shù)量的2倍.

1)試問去年每噸桃子的平均價格是多少萬元?兩次采購的總數(shù)量是多少噸?

2)該公司可將桃子加工成桃脯或桃汁,每天只能加工其中一種.若單獨加工成桃脯,每天可加工3噸桃子,每噸可獲利0.7萬元;若單獨加工成桃汁,每天可加工9噸桃子,每噸可獲利0.2萬元.為出口需要,所有采購的桃子必須在30天內加工完畢.

①根據(jù)該公司的生產能力,加工桃脯的時間不能超過多少天?

②在這次加工生產過程中,應將多少噸桃子加工成桃脯才能獲取最大利潤?最大利潤為多少?

查看答案和解析>>

同步練習冊答案