如果把分式
x2
(x+y)
的x和y都擴大k倍,那么分式的值應(yīng)( 。
A、擴大k倍
B、不變
C、擴大k2
D、縮小k倍
分析:依題意分別用kx和ky去代換原分式中的x和y,利用分式的基本性質(zhì)化簡即可.
解答:解:分別用kx和ky去代換原分式中的x和y,
(kx)2
kx+ky
=
k2x2
kx+ky
=
k2x2
k(x+y)
=k
x2
(x+y)
,
可見新分式是原分式的k倍.
故選A.
點評:解題的關(guān)鍵是抓住分子、分母變化的倍數(shù),解此類題首先把字母變化后的值代入式子中,然后約分,再與原式比較,最終得出結(jié)論.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

換元法是把一個比較復(fù)雜的數(shù)學式子的一部分看成是一個整體,用另一個字母代替這一部分(即換元).換元法的好處是能使式子得到簡化,各項的關(guān)系容易看清,便于解決問題.此方法充分體現(xiàn)了整體的數(shù)學思想.例如:用換元法解分式方程
2x-1
x
-
x
2x-1
=2
時,如果設(shè)
2x-1
x
=y
,并將原方程化為關(guān)于y的整式方程,那么這個整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成
2x-1
x
=y1
2x-1
x
=y2
,即可解出x1和x2.請用換元法解方程:x2-
12
x2-2x
=2x-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

拓廣探索
請閱讀某同學解下面分式方程的具體過程.
解方程
1
x-4
+
4
x-1
=
2
x-3
+
3
x-2

解:
1
x-4
-
3
x-2
=
2
x-3
-
4
x-1
,①
-2x+10
x2-6x+8
=
-2x+10
x2-4x+3
,②
1
x2-6x+8
=
1
x2-4x+3
,③
∴x2-6x+8=x2-4x+3.        ④
x=
5
2

x=
5
2
代入原方程檢驗知x=
5
2
是原方程的解.
請你回答:
(1)得到①式的做法是
 
;得到②式的具體做法是
 
;得到③式的具體做法是
 
;得到④式的根據(jù)是
 

(2)上述解答正確嗎?如果不正確,從哪一步開始出現(xiàn)錯誤答:
 
.錯誤的原因是
 

(3)給出正確答案(不要求重新解答,只需把你認為應(yīng)改正的加上即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀某同學解下面分式方程的具體過程.
解方程
1
x-4
+
4
x-1
=
2
x-3
+
3
x-2

解:
1
x-4
-
3
x-2
=
2
x-3
-
4
x-1
,①
-2x+10
x2-6x+8
=
-2x+10
x2-4x+3
,②
1
x2-6x+8
=
1
x2-4x+3
,③
∴x2-6x+8=x2-4x+3.④
x=
5
2

x=
5
2
代入原方程檢驗知x=
5
2
是原方程的解.
上述解答正確嗎?如果正確,寫出每一步的根據(jù);如果不正確,從哪一步開始出現(xiàn)錯誤?錯誤的原因是什么?并給出正確解答.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果把分式
x2
(x+y)
的x和y都擴大k倍,那么分式的值應(yīng)( 。
A.擴大k倍B.不變C.擴大k2D.縮小k倍

查看答案和解析>>

同步練習冊答案