【題目】對于鈍角α,定義它的三角函數(shù)值如下:sinα=sin (180°-α),cosα=-cos (180°-α);若一個三角形的三個內(nèi)角的比是1∶1∶4,A,B是這個三角形的兩個頂點,sinA,cosB是方程4x2-mx-1=0的兩個不相等的實數(shù)根,求m的值及∠A和∠B的大。
【答案】m=0,∠A=30°,∠B=120°.
【解析】
根據(jù)三個內(nèi)角的角度比分類討論,求出方程的根代入求解即可.
解:∵三角形的三個內(nèi)角的比是1∶1∶4,
∴三個內(nèi)角分別為30°,30°,120°,
①當(dāng)∠A=30°,∠B=120°時,方程的兩根為,-,
將代入方程,得4×2-m×-1=0,
解得m=0,
經(jīng)檢驗-是方程4x2-1=0的根,
∴m=0符合題意;
②當(dāng)∠A=120°,∠B=30°時,兩根為,,不符合題意;
③當(dāng)∠A=30°,∠B=30°時,兩根為,,
將代入方程得:4×()2-m×-1=0,
解得m=0,
經(jīng)檢驗不是方程4x2-1=0的根.
綜上所述:m=0,∠A=30°,∠B=120°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:一組自然數(shù)1,2,3…k,去掉其中一個數(shù)后剩下的數(shù)的平均數(shù)為16,則去掉的數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD相交于點O,過點O作OE⊥BC于E點,連接DE交OC于F點,作FG⊥BC于G點,則△ABC與△FGC是位似圖形嗎?若是,請說出位似中心,并求出相似比;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為A(3,0),其部分圖象如圖所示,下列結(jié)論中: ①; ②方程的兩個根是; ③;④; ⑤當(dāng)0<x<3時,y隨x增大而減;其中結(jié)論正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=mx2+(m﹣2)x﹣2m+2(m≠0).
(1)求證:拋物線與x軸有交點;
(2)若拋物線與x軸交于點A(x1,0),B(x2,0),點A在點B的右側(cè),且x1+2x2=1.
①求m的值;
②點P在拋物線上,點G(n,﹣n﹣),求PG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,過A,C,D三點的圓與斜邊AB交于點E,連接DE.
(1)求證:AC=AE;
(2)若AC=6,CB=8,求△ACD外接圓的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系內(nèi),頂點的坐標(biāo)分別為A(﹣4,4),B(﹣2,5),C(﹣2,1).
(1)將△ABC繞點(0,3)旋轉(zhuǎn)180°,得到△A1B1C1,畫出旋轉(zhuǎn)后的△A1B1C1;
(2)求(1)中的點C旋轉(zhuǎn)到點C1時,點C經(jīng)過的路徑長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動,第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖.
(1)若乙固定在E處,移動甲后黑色方塊構(gòu)成的拼圖是軸對稱圖形的概率是多少;
(2)若甲、乙均可在本層移動,用畫樹狀圖法或列表法求出黑色方塊所構(gòu)成拼圖是軸對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花卉種植基地準(zhǔn)備圍建一個面積為100平方米的矩形苗圃園種植玫瑰花,其中一邊靠墻,另外三邊用29米長的籬笆圍成.已知墻長為18米,為方便進(jìn)入,在墻的對面留出1米寬的門(如圖所示),求這個苗圃園垂直于墻的一邊長為多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com