如圖,△ABC≌△ADE,BC的延長線交DE于F,∠B=30°,∠AED=110°,∠DAC=l0°,則∠DFB的度數(shù)為
50°
50°
分析:設(shè)AD與BF交于點(diǎn)M,要求∠DFB的大小,可以在△DFM中利用三角形的內(nèi)角和定理求解,轉(zhuǎn)化為求∠AMC的大小,再轉(zhuǎn)化為在△ACM中求∠ACM就可以.
解答:解:設(shè)AD與BF交于點(diǎn)M,
∵△ABC≌△ADE,
∴∠AED=∠ACB=110°,
∴∠ACM=180°-110°=70°,
∠AMC=180°-∠ACM-∠DAC=180°-70°-10°=100°,
∴∠FMD=∠AMC=100°,
∴∠DFB=180°-∠D-∠FMD=180°-100°-30°=50°.
故答案為:50°.
點(diǎn)評:本題考查了全等三角形的性質(zhì),由已知條件,聯(lián)想到所學(xué)的定理,充分挖掘題目中的結(jié)論是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,△ABC中,∠ACB=90°,CD⊥AB于D,則圖中所有與∠B互余的角
∠A與∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,AB的延長線與過C點(diǎn)的切線GC相交于點(diǎn)D,BE與AC相交于點(diǎn)F精英家教網(wǎng),且CB=CE.
求證:(1)BE∥DG;
(2)CB2-CF2=BF•FE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:如圖,△ABC內(nèi)接于⊙O,AE切⊙O于點(diǎn)A,BD∥AE交AC的延長線于點(diǎn)D,求證:AB2=AC•AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC、△DCE、△FEG是全等的三個等腰三角形,底邊BC、CE、EG在同一直線上,且AB=
3
,BC=1,連接BF交AC、DC、DE分別為P、Q、R.
試證△BFG∽△FEG,并求出BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC的兩個外角的平分線相交于D,若∠B=50°,則∠ADC=( 。
A、60°B、80°C、65°D、40°

查看答案和解析>>

同步練習(xí)冊答案