在平面直角坐標系中,已知拋物線y=x2+bx+c(b,c為常數(shù))的頂點為P,等腰直角三角形ABC的頂點A的坐標為(0,-1),C的坐標為(4,3),直角頂點B在第四象限.
(1)如圖,若該拋物線過A,B兩點,求該拋物線的函數(shù)表達式;
(2)平移(1)中的拋物線,使頂點P在直線AC上滑動,且與AC交于另一點Q.
(i)若點M在直線AC下方,且為平移前(1)中的拋物線上的點,當以M、P、Q三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點M的坐標;
(ii)取BC的中點N,連接NP,BQ.試探究是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.

【答案】分析:(1)先求出點B的坐標,然后利用待定系數(shù)法求出拋物線的函數(shù)表達式;
(2)i)首先求出直線AC的解析式和線段PQ的長度,作為后續(xù)計算的基礎.
若△MPQ為等腰直角三角形,則可分為以下兩種情況:
①當PQ為直角邊時:點M到PQ的距離為.此時,將直線AC向右平移4個單位后所得直線(y=x-5)與拋物線的交點,即為所求之M點;
②當PQ為斜邊時:點M到PQ的距離為.此時,將直線AC向右平移2個單位后所得直線(y=x-3)與拋物線的交點,即為所求之M點.
ii)由(i)可知,PQ=為定值,因此當NP+BQ取最小值時,有最大值.
如答圖2所示,作點B關于直線AC的對稱點B′,由分析可知,當B′、Q、F(AB中點)三點共線時,NP+BQ最小,最小值為線段B′F的長度.
解答:解:(1)由題意,得點B的坐標為(4,-1).
∵拋物線過A(0,-1),B(4,-1)兩點,
,解得:b=2,c=-1,
∴拋物線的函數(shù)表達式為:y=x2+2x-1.

(2)i)∵A(0,-1),C(4,3),
∴直線AC的解析式為:y=x-1.
設平移前拋物線的頂點為P,則由(1)可得P的坐標為(2,1),且P在直線AC上.
∵點P在直線AC上滑動,∴可設P的坐標為(m,m-1),
則平移后拋物線的函數(shù)表達式為:y=(x-m)2+m-1.
解方程組:,
解得
∴P(m,m-1),Q(m-2,m-3).
過點P作PE∥x軸,過點Q作QE∥y軸,則
PE=m-(m-2)=2,QE=(m-1)-(m-3)=2.
∴PQ==AP
若△MPQ為等腰直角三角形,則可分為以下兩種情況:
①當PQ為直角邊時:點M到PQ的距離為(即為PQ的長).
由A(0,-1),B(4,-1),P(2,1)可知,
△ABP為等腰直角三角形,且BP⊥AC,BP=
如答圖1,過點B作直線l1∥AC,交拋物線y=x2+2x-1于點M,則M為符合條件的點.
∴可設直線l1的解析式為:y=x+b1,
∵B(4,-1),∴-1=4+b1,解得b1=-5,
∴直線l1的解析式為:y=x-5.
解方程組,得:
∴M1(4,-1),M2(-2,-7).

②當PQ為斜邊時:MP=MQ=2,可求得點M到PQ的距離為
如答圖1,取AB的中點F,則點F的坐標為(2,-1).
由A(0,-1),F(xiàn)(2,-1),P(2,1)可知:
△AFP為等腰直角三角形,且點F到直線AC的距離為
過點F作直線l2∥AC,交拋物線y=x2+2x-1于點M,則M為符合條件的點.
∴可設直線l2的解析式為:y=x+b2,
∵F(2,-1),∴-1=2+b2,解得b1=-3,
∴直線l2的解析式為:y=x-3.
解方程組,得:,
∴M3(1+,-2+),M4(1-,-2-).
綜上所述,所有符合條件的點M的坐標為:
M1(4,-1),M2(-2,-7),M3(1+,-2+),M4(1-,-2-).

ii)存在最大值.理由如下:
由i)知PQ=為定值,則當NP+BQ取最小值時,有最大值.

如答圖2,取點B關于AC的對稱點B′,易得點B′的坐標為(0,3),BQ=B′Q.
連接QF,F(xiàn)N,QB′,易得FN∥PQ,且FN=PQ,
∴四邊形PQFN為平行四邊形.
∴NP=FQ.
∴NP+BQ=FQ+B′P≥FB′==
∴當B′、Q、F三點共線時,NP+BQ最小,最小值為
的最大值為=
點評:本題為二次函數(shù)中考壓軸題,考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、一次函數(shù)、幾何變換(平移,對稱)、等腰直角三角形、平行四邊形、軸對稱-最短路線問題等知識點,考查了存在型問題和分類討論的數(shù)學思想,試題難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應點M′的坐標為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習冊答案