如圖,六邊形ABCDEF中,AB∥DE且AB=DE,BC∥EF且BC=EF,AF∥CD且AF=CD,∠ABC=∠DEF=120°,∠AFE=∠BCD=90°,AB=2,BC=1,CD=數(shù)學(xué)公式,則該六邊形ABCDEF的面積是________.


分析:連接AE,BD,則△AFE≌△DCB,故六邊形ABCDEF面積為2S△BCD+S四邊形ABDE.分別計(jì)算其面積即可解題.
解答:解:連接AE,BD,作AG⊥DE,
由題意知△AFE≌△DCB,
∴AE=BD,且六邊形ABCDEF面積為2S△BCD+S四邊形ABDE
∵AF=,F(xiàn)E=1,
∴∠FEA=60°,且AE==2,
∵∠DEF=120°,
∴∠AEG=60°,AG=×2=,
平行四邊形AEDB的面積為DE×AG=2×=2
∵S△BCD=×1×=,
∴六邊形ABCDEF面積為2S△BCD+S四邊形ABDE=2×+2=3
故答案為
點(diǎn)評(píng):本題考查了全等三角形的證明,考查了勾股定理的正確運(yùn)用,本題中求平行四邊形ABDE的面積是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖①:四邊形ABCD為正方形,M、N分別是BC和CD中點(diǎn),AM與BN交于點(diǎn)P,
(1)請(qǐng)你用幾何變換的觀(guān)點(diǎn)寫(xiě)出△BCN是△ABM經(jīng)過(guò)什么幾何變換得來(lái)的;
(2)觀(guān)察圖①,圖中是否存在一個(gè)四邊形,這個(gè)四邊形的面積與△APB的面積相等?寫(xiě)出你的結(jié)論.(不必證明)
(3)如圖②:六邊形ABCDEF為正六邊形,M、N分別是CD和DE的中點(diǎn),AM與BN交于點(diǎn)P,問(wèn):你在(2)中所得的結(jié)論是否成立?若成立,寫(xiě)出結(jié)論并證明,若不成立請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD是由四個(gè)邊長(zhǎng)為l的正六邊形所圍住,則四邊形ABCD的面積是( 。
A、
3
4
B、
3
2
C、1
D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:四邊形ABCD中,AD∥BC,∠B=∠C,AD=a(a>0),BC=8,AD、BC間的距離為2
3
,有一邊長(zhǎng)為2的等邊△EFG,在四邊形ABCD內(nèi)作任意運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中始終保持EF∥BC.記△EFG在四邊形ABCD內(nèi)部運(yùn)動(dòng)過(guò)程中“能夠掃到的部分”的面積為S.
(1)如圖①所示,當(dāng)a=8時(shí),△EFG在四邊形ABCD內(nèi)部運(yùn)動(dòng)過(guò)程中“能夠掃到的部分”即為六邊形HIBCJK,則S=
 
;
(2)如圖②所示,當(dāng)a=10時(shí),求S的值;
(3)如圖③所示,當(dāng)a=2時(shí),求S的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的內(nèi)角和為2×180°=360°,五邊形ABCDE的內(nèi)角和為3×180°=540°,…由此可見(jiàn):
(1)六邊形的內(nèi)角和為
720
720
度;
(2)n邊形的內(nèi)角和為
(n-2)×180
(n-2)×180
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是由四個(gè)邊長(zhǎng)為1的正六邊形所圍住,則四邊形ABCD的面積是(     )
A.1B.2C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案