在下列圖形中,不是軸對稱圖形的是


  1. A.
    線段
  2. B.
  3. C.
    三角形
  4. D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,在正方形ABCD中,E是AD的中點,F(xiàn)是BA延長線上的一點,AF=
12
AB
.(1)求證△ABE≌△ADF;
精英家教網(wǎng)
(2)閱讀下列材料:
如圖2,把△ABC沿直線BC平行移動線段BC的長度,可以變到△ECD的位置;
精英家教網(wǎng)
如圖3,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;
精英家教網(wǎng)
如圖4,以點A為中心把△ABC旋轉180°,可以變到△AED的位置.
精英家教網(wǎng)
像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
(3)回答下列問題:
①在圖1中,可以通過平行移動、翻折、旋轉中的哪一種方法使△ABE變到△ADF的位置,
答:
 

②指出圖1中,線段BE與DF之間的關系.
答:
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,網(wǎng)格中每個小正方形的邊長為1.請你認真觀察圖中的三個網(wǎng)格中陰影部分構成的圖案.解答下列問題:
(1)這三個圖案都具有以下共同特征:
①都是
中心
中心
對稱圖形;②陰影部分面積都是
4
4
;③都不是
對稱圖形.
(2)請你在備用圖中設計出一個具備上述特征的圖案(圖中已給出除外)

查看答案和解析>>

科目:初中數(shù)學 來源:2012年北師大版初中數(shù)學八年級上3.5它們是怎樣變過來的練習卷(解析版) 題型:解答題

如圖①,在正方形ABCD中,E是AD的中點,F(xiàn)是BA延長線上的一點,AF=AB,

(1)求證:△ABE≌△ADF.

(2)閱讀下列材料:如圖②,把△ABC沿直線平移線段BC的長度,可以變到△ECD的位置;如圖③,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;如圖④,以點A為中心,把△ABC旋轉180°,可以變到△AED的位置,像這樣其中一個三角形是由另一個三角形按平行移動、翻折、旋轉等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

      圖①               圖②                  圖③           圖④

請回答下列問題:

(1)在圖①中,可以通過平移、翻折、旋轉中的哪一種方法,使△ABE變到△ADF的位置?

(2)指出圖①中線段BE與DF之間的關系.

 

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:解答題

如圖所示①,在正方形ABCD中,E是AD的中點,F(xiàn)是BA延長線上的一點,AF=

     ①                 ②                ③          ④
(1)求證:△ABE≌△ADF;
(2)閱讀下面材料:
如圖②,把△ABC沿直線BC平行移動線段BC的長度,可以變到△ECD的位置;
如圖③,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;
如圖④,以點A為中心,把△ABC旋轉180°,可以變到△AED的位置。
像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換。
回答下列問題:
①在圖①中,可以通過平行移動、翻折、旋轉中的哪一種方法,使△ABE變到△ADF的位置?
②指出圖①中線段BE與DF之間的關系。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在正方形ABCD中,E是AD的中點,F(xiàn)是BA延長線上的一點,AF=
1
2
AB
.(1)求證△ABE≌△ADF;

精英家教網(wǎng)

(2)閱讀下列材料:
如圖2,把△ABC沿直線BC平行移動線段BC的長度,可以變到△ECD的位置;

精英家教網(wǎng)

如圖3,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;

精英家教網(wǎng)

如圖4,以點A為中心把△ABC旋轉180°,可以變到△AED的位置.

精英家教網(wǎng)

像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
(3)回答下列問題:
①在圖1中,可以通過平行移動、翻折、旋轉中的哪一種方法使△ABE變到△ADF的位置,
答:______.
②指出圖1中,線段BE與DF之間的關系.
答:______.

查看答案和解析>>

同步練習冊答案