【題目】如圖,直線AB,CD相交于點O,OD平分∠BOE,OF平分∠AOD.

1)若∠AOC=32°,求∠EOF的度數(shù);

2)若∠EOF=60°,求∠AOC的度數(shù).

【答案】(1)42°;(2)20°.

【解析】

(1)由∠AOC=32°,根據(jù)鄰補角的定義可求出∠AOD的度數(shù),根據(jù)對等角相等可求出∠DOB的度數(shù),然后由角平分線的性質(zhì),可求∠DOE和∠DOF的度數(shù),最后根據(jù)∠EOF=DOF-DOE,代入即可解答;

(2)設(shè)∠AOC=BOD=x°,可知∠DOF=(x+60)°,易求∠AOD=2DOF,最后根據(jù)∠AOD+BOD=180°列出方程可求得x的值,從而可求得∠AOC的度數(shù).

(1)∵∠AOC=32°,

∴∠AOD=180°-AOC=148°,

OF平分∠AOD,

∴∠AOF=DOF=74°,

∵直線AB、CD相交于點O,

∴∠AOC=BOD=32°,

OD平分∠BOE,

∴∠BOD=EOD=32°,

∴∠EOF=DOF-EOD=74°-32°=42°;

(2)設(shè)∠AOC=BOD=x°,則∠DOF=DOE+EOF=(x+60)°,

OF平分∠AOD,

∴∠AOD=2DOF=(2x+120)°,

∵∠AOD+BOD=180°,

2x+120+x=180,

x=20,

∴∠AOC=20°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠A36°,BD平分∠ABCAC于點D.求證:ADBC

證明:∵ABAC

∴∠ABC=∠C    

∵∠A36°

又∵∠A+ABC+C180°    

∴∠ABC   °

BD平分∠ABC

∴∠1=∠2   °

∴∠C=∠   72°

AD   BC      

ADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解決下面的問題

(一)如圖,大正方形是由兩個小正方形和兩個長方形拼成的.

(1)請你用兩個不同形式的代數(shù)式表示這個大正方形的面積;

代數(shù)式

代數(shù)式

(2)由可得到關(guān)于的等式:

(二)從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(圖甲),然后拼成一個平行四邊形(圖乙). 那么通過計算兩個圖形陰影部分的面積,可以驗證成立的乘法公式是 (用字母表示)

(3)計算 (直接寫結(jié)果)

用上面的卡片,(數(shù)量自定)畫出一個圖形,來驗證上面的整式運算(要求圖中有長度和面積的標記)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個口袋中有4個完全相同的小球,它們的標號分別為1,2,3,4,從中隨機摸出一個小球記下標號后放回,再從中隨機摸出一個小球,求兩次摸出的小球的標號之和大于4的概率?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù) y=ax2+bx+c(a<0) 的圖象經(jīng)過點(2,0),且其對稱軸為直線 x=1 ,則使函數(shù)值 y>0 成立的 x 的取值范圍是( )
A.x<4 或 x>2
B.4 ≤ x ≤ 2
C.x ≤ 4 或 x ≥ 2
D.4<x<2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A的坐標為(4,0),點B從原點出發(fā),沿y軸負方向以每秒1個單位長度的速度運動,分別以OB,AB為直角邊在第三、第四象限作等腰RtOBE,等腰RtABF,連結(jié)EFy軸于P點,當點By軸上運動時,經(jīng)過t秒時,點E的坐標是_____(用含t的代數(shù)式表示),PB的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點AB是數(shù)軸上的兩點.點P從原點出發(fā),以每秒2個單位的速度向點B作勻速運動;同時,點Q也從原點出發(fā)用2s到達點A處,并在A處停留1s,然后按原速度向點B運動,速度為每秒4個單位.最終,點Q比點P3s到達B處.設(shè)點P運動的時間為t s

1)點A表示的數(shù)為_________;當時,P、Q兩點之間的距離為________個單位長度;

2)求點B表示的數(shù);

3)從PQ兩點同時出發(fā)至點P到達點B處的這段時間內(nèi),t為何值時,P、Q兩點相距3個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,
(1)若半徑為1的⊙O經(jīng)過點A、B、D,且∠A=60°,求此時菱形的邊長;
(2)若點P為AB上一點,把菱形ABCD沿過點P的直線a折疊,使點D落在BC邊上,利用無刻度的直尺和圓規(guī)作出直線a.(保留作圖痕跡,不必說明作法和理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校期末考試要給學(xué)生印制復(fù)習(xí)資料若干份,印刷廠有甲、乙兩種收費方式,除按印刷份數(shù)收取印刷費用外,甲種方式還收取制版費,而乙種不需要,兩種印刷方式的費用y(元)與印刷份數(shù)x(份)之間的函數(shù)關(guān)系如圖所示:

(1)填空:甲種收費方式的函數(shù)關(guān)系式是 , 乙種收費方式的函數(shù)關(guān)系式是
(2)若需印刷100﹣400份(含100和400)份復(fù)習(xí)資料,選擇哪種印刷方式比較合算.

查看答案和解析>>

同步練習(xí)冊答案