【題目】東坡商貿(mào)公司購進(jìn)某種水果成本為20元/kg,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價P(元/kg)與時間t(天)之間的函數(shù)關(guān)系式P=且其日銷售量y(kg)與時間t(天)的關(guān)系如表下:
時間t(天) | 1 | 3 | 6 | 10 | 20 | … |
日銷售量y(kg) | 118 | 114 | 108 | 100 | 80 | … |
(1)已知y與t之間的變化符合一次函數(shù)關(guān)系,試求在第30天的日銷售量.
(2)哪一天的銷售利潤最大?最大日銷售利潤為多少?
(3)在實際銷售前24天中,該公司決定每銷售1kg水果就捐贈n元利潤(0<n<9)給“精準(zhǔn)扶貧”對象,現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求n的取值范圍.
【答案】(1)60;(2) t=20時,Wmax=1600;(3) 4≤n<9.
【解析】
(1)設(shè)y=kt+b,利用待定系數(shù)法即可解決問題.
(2)日利潤=日銷售量×每公斤利潤,據(jù)此分別表示前24天和后24天的日利潤,根據(jù)函數(shù)性質(zhì)求最大值后比較得結(jié)論.
(3)列式表示前24天中每天扣除捐贈后的日銷售利潤,根據(jù)函數(shù)性質(zhì)求n的取值范圍.
(1)設(shè)y=kt+b
y=-2t+120 ,t=30
y=60
∴第30天的日銷售量為60kg;
(2)設(shè)第t天的銷售利潤為w元.
則W=(P-20)·y
Ⅰ、1≤t≤24時
W=(t+30-20)·(-2t+120) =-t2+40t+1200
當(dāng)t=20時,Wmax=1600
Ⅱ、25≤t≤48時
W=(-t+48-20)( -2t+120)
=2t2-176t+3360
當(dāng)t=25時,Wmax=210
故t=20時,Wmax=1600
(3)依題意W=(t+30-20-n)·(-2t+120)
=-t2+(40+2n)t+1200-120a
對稱軸軸x=-≥24
解得n≥4
∴4≤n<9
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用周長為30米的籬笆圍成.已知墻長為米,設(shè)苗圃園垂直于墻的一邊長為米,苗圃園的面積為平方米.
(1)直接寫出與的函數(shù)關(guān)系式;
(2)若,求的取值范圍;
(3)當(dāng)時,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=k1x+,且k1k2≠0,自變量x與函數(shù)值y滿足以下表格:
x | …… | -4 | -3 | -2 | -1 | - | 1 | 2 | 3 | 4 | …… | |
y | …… | -3 | -2 | -1 | 0 | 1 | -1 | 0 | 1 | m | n | …… |
(1)根據(jù)表格直接寫出y與x的函數(shù)表達(dá)式及自變量x的取值范圍______
(2)補(bǔ)全上面表格:m=______,n=______;在如圖所示的平面直角坐標(biāo)系中,請根據(jù)表格中的數(shù)據(jù)補(bǔ)全y關(guān)于x的函數(shù)圖象;
(3)結(jié)合函數(shù)圖象,解決下列問題:
①寫出函數(shù)y的一條性質(zhì):______;
②當(dāng)函數(shù)值y≥時,x的取值范圍是______;
③當(dāng)函數(shù)值y=-x時,結(jié)合圖象請估算x的值為______(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=2,AC=3,D為BC的中點,動點E,F分別在AB,AC上,分別過點EG∥AD∥FH,交BC于點G、H,若EF∥BC,則EF+EG+FH的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形紙片ABCD中,,點E是CD邊的中點將該紙片折疊,使點B與點E重合,折痕交AD,BC邊于點M,N,連接ME,NE.請從下面A,B兩題中任選一題作答,我選擇A.如圖1,若,則ME的長為______;B.如圖2,若,則ME的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防“甲型H1N1”,某校對教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時,求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關(guān)系式呢?
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時,生方可進(jìn)教室,那么從消毒開始,至少需要幾分鐘后,生才能進(jìn)入教室?
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:我們把兩條中線互相垂直的三角形稱為“中垂三角形”如圖所示,△ABC中AF、BE是中線,且AF⊥BE,垂足為P,像△ABC這樣的三角形稱為“中垂三角形”,如果∠ABE=30°,AB=6,那么此時AC的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com