求證:同角的余角相等.(畫出圖,寫出已知、求證、證明)

答案:
解析:

已知:∠2是∠1的余角,∠3是∠1的余角.

求證:∠2=∠3.

證明:因為  ∠2與∠1互余,

所以  ∠1+∠2=(互余定義).

因為  ∠3與∠1互余,

所以  ∠1+∠3=(同上),

所以  ∠1+∠3=∠1+∠2(等量代換),

所以  ∠2=∠3.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、已知,如圖,CA⊥BA于A,∠2+∠B=90°.
求證:∠1=∠B
證明:∵CA⊥BA于A,( 已知 )
∴∠1+∠2=90°.
(垂直定義)

∵∠2+∠B=90°,(已知 )
∴∠1=∠B.
(同角的余角相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,直線l過正方形ABCD的頂點B,A、C兩頂點在直線l同側(cè),過點A、C分別作AE⊥直線l、CF⊥直線l,垂足分別為E、F.
(1)求證:EF=AE+CF;
證明:∵四邊形ABCD是正方形
∴AB=BC,∠ABC=90°
∵AE⊥直線l、CF⊥直線l.
∴∠AEB=∠BFC=90°
∴∠EAB+∠ABE=90°,
又∵∠ABE+∠CBF=180°-∠ABC=180°-90°=90°
∠EAB=∠CBF
∠EAB=∠CBF
(同角的余角相等)
在△AEB與△BFC中
∵(
∠AEB=∠BFC
∠EAB=∠CBF
AB=BC
∠AEB=∠BFC
∠EAB=∠CBF
AB=BC

∴△AEB≌△BFC(
AAS
AAS

AE=BF,EB=FC
AE=BF,EB=FC
全等三角形的對應(yīng)邊相等
全等三角形的對應(yīng)邊相等

∵EF=BF+EB
∴EF=AE+CF(等量代換)
(2)當(dāng)A、C兩頂點在直線l的兩側(cè)時(如圖2),其它條件不變,那么EF、AE、CF滿足什么數(shù)量關(guān)系?并證明你所得到的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(1)完成下面的證明:
已知:如圖1,AB∥CD∥GH,EG平分∠BEF,F(xiàn)G平分∠EFD.
求證:∠EGF=90°.
證明:∵HG∥AB,(已知) 
∴∠1=∠3. (
兩直線平行,內(nèi)錯角相等
兩直線平行,內(nèi)錯角相等
 )
又∵HG∥CD,(已知)
∴∠2=∠4.  (
兩直線平行,內(nèi)錯角相等
兩直線平行,內(nèi)錯角相等

∵AB∥CD,(已知)
∴∠BEF+
∠EFD
∠EFD
=180°.(
兩直線平行,同旁內(nèi)角互補
兩直線平行,同旁內(nèi)角互補

又∵EG平分∠BEF,(已知)
∴∠1=
1
2
BEH
BEH
.(
角平分線定義
角平分線定義

又∵FG平分∠EFD,(已知)
∴∠2=
1
2
EFD
EFD
.(
角平分線定義
角平分線定義

∴∠1+∠2=
1
2
∠BEH
∠BEH
+
∠EFD
∠EFD
).
∴∠1+∠2=90°.
∴∠3+∠4=90°.(
等量代換
等量代換
).即∠EGF=90°.
(2)如圖2,已知∠ACB=90°,那么∠A的余角是哪個角呢?答:
∠B
∠B
;
小明用三角尺在這個三角形中畫了一條高CD(點D是垂足),得到圖3,
①請你幫小明在圖中畫出這條高;
②在圖中,小明通過仔細觀察、認真思考,找出了三對余角,你能幫小明把它們寫出來嗎?答:a
∠ACD與∠BCD
∠ACD與∠BCD
;b
∠A與∠ACD
∠A與∠ACD
;c
∠B與∠BCD
∠B與∠BCD

③∠ACB,∠ADC,∠CDB都是直角,所以∠ACB=∠ADC=∠CDB,小明還發(fā)現(xiàn)了另外兩對相等的角,請你也仔細地觀察、認真地思考分析,試一試,能發(fā)現(xiàn)嗎?把它們寫出來,并請說明理由.
(3)在直角坐標(biāo)系中,第一次將△OAB變換成OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
①觀察每次變換前后的三角形有何變化,找出規(guī)律,按此規(guī)律再將△OA3B3變換成△OA4B4,則A4的坐標(biāo)為
(16,3)
(16,3)
,B4的坐標(biāo)為
(32,0)
(32,0)

②按以上規(guī)律將△OAB進行n次變換得到△AnBn,則可知An的坐標(biāo)為
(2n,3)
(2n,3)
,Bn的坐標(biāo)為
(2n+1,0)
(2n+1,0)

③可發(fā)現(xiàn)變換的過程中A、A1、A2、…、An縱坐標(biāo)均為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,直線l過正方形ABCD的頂點B,A、C兩頂點在直線l同側(cè),過點A、C分別作AE⊥直線l、CF⊥直線l,垂足分別為E、F.
(1)求證:EF=AE+CF;
證明:∵四邊形ABCD是正方形
∴AB=BC,∠ABC=90°
∵AE⊥直線l、CF⊥直線l.
∴∠AEB=∠BFC=90°
∴∠EAB+∠ABE=90°,
又∵∠ABE+∠CBF=180°-∠ABC=180°-90°=90°
∴______(同角的余角相等)
在△AEB與△BFC中
∵(______)
∴△AEB≌△BFC(______)
∴______(______)
∵EF=BF+EB
∴EF=AE+CF(等量代換)
(2)當(dāng)A、C兩頂點在直線l的兩側(cè)時(如圖2),其它條件不變,那么EF、AE、CF滿足什么數(shù)量關(guān)系?并證明你所得到的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案