精英家教網 > 初中數學 > 題目詳情
正方形ABCD在如圖所示的平面直角坐標系中,A在x軸正半軸上,D在y軸的負半軸上,AB交y軸正半軸于E,BC交x軸負半軸于F,OE=1,OD=4,拋物線y=ax2+bx-4過A、D、F三點.
(1)求拋物線的解析式;
(2)Q是拋物線上D、F間的一點,過Q點作平行于x軸的直線交邊AD于M,交BC所在直線于N,若S四邊形AFQM=S△FQN,則判斷四邊形AFQM的形狀;
(3)在射線DB上是否存在動點P,在射線CB上是否存在動點H,使得AP⊥PH且AP=PH?若存在,請給予嚴格證明;若不存在,請說明理由.

【答案】分析:(1)根據三角形△OEA∽△ADO,D(0,-4),E(0,1)可求出A點的坐標,再根據Rt△ADE≌Rt△ABF可求出F點的坐標,把A,F兩點的坐標代入二次函數的解析式即可取出未知數的值,進而求出其解析式;
(2)根據“過Q點作平行于x軸的直線交邊AD于M,交BC所在直線于N”,又知AM∥CB,可以判斷,四邊形AMNF為平行四邊形,可得NM=AF=5,設QM=m,可用m表示出QN的長,利用S四邊形AFQM=S△FQN,可以求出m的值;可知若Q(a,b)則必有M(a+1,b),代入二次函數解析式,可求得M的坐標,依據坐標特點可判斷四邊形的形狀;
(3)先根據題意畫出圖形,根據圖形可看出,有三種情況符合題目條件:
①通過證明Rt△PQH≌Rt△APN得到∠APN+∠HPQ=90°,進一步得到AP⊥PH,
②通過證明Rt△PMH≌Rt△PAN和PN∥BH得到∠HPA=∠NPA+∠HPN=∠MHP+∠HPM=90°,
③通過證明Rt△PNH≌Rt△PMA和PN∥AB,得到∠HPA=90°.
解答:解:(1)依條件有D(0,-4),E(0,1).
∵∠EAO+∠OAD=90°,
∠ADO+∠OAD=90°,
∴∠EAO=∠ADO,
又∵∠AOE=∠AOD=90°,
∴△OEA∽△ADO知OA2=OE•OD=4.
∴A(2,0)由Rt△ADE≌Rt△ABF得DE=AF.
∴F(-3,0).
將A,F的坐標代入拋物線方程,

∴a=b=
∴拋物線的解析式為y=x2+x-4;

(2)設QM=m,
S四邊形AFQM=(m+5)•|yQ|,S△FQN=(5-m)•|yQ|.
∴(m+5)•|yQ|=(5-m)•|yQ|
∴m=1
設Q(a,b),則M(a+1,b),

∴a2-2a-3=0,
∴a=-1(舍去a=3),b=-4,
此時點M坐標為(0,-4)與點D重合,QF=AM,AF>QM,AF∥QM,
則AFQM為等腰梯形;

(3)在射線DB上存在一點P,在射線CB上存在一點H.
使得AP⊥PH,且AP=PH成立,證明如下:
當點P如圖①所示位置時,不妨設PA=PH,過點P作PQ⊥BC,PM⊥CD,PN⊥AD,垂足分別為Q、M、N.
若PA=PH.由PM=PN得:
AN=PQ,
∴Rt△PQH≌Rt△APN
∴∠HPQ=∠PAN.
又∠PAN+∠APN=90°
∴∠APN+∠HPQ=90°
∴AP⊥PH.
當點P在如圖②所示位置時,
過點P作PM⊥BC,PN⊥AB,
垂足分別為M,N.
同理可證Rt△PMH≌Rt△PAN.
∠MHP=∠NAP.
又∠MHP=∠HPN,
∠HPA=∠NPA+∠HPN=∠MHP+∠HPM=90°,
∴PH⊥PA.(1分)
當P在如圖③所示位置時,過點P作PN⊥BH,垂足為N,PM⊥AB延長線,垂足為M.
同理可證Rt△PNH≌Rt△PMA.
∴PH⊥PA.
注意:分三種情況討論,作圖正確并給出一種情況證明正確的,同理可證出其他兩種情況的給予(4分);
若只給出一種正確證明,其他兩種情況未作出說明,可給(2分);
若用四點共圓知識證明且證明過程正確的也沒有討論三種情況的.只給(2分).

點評:此題是一道綜合題,考查了以下內容:
(1)知識:用待定系數法求函數解析式、根據二次函數的坐標特點判斷四邊形的形狀、存在性動點問題;
(2)技能:對開放型問題進行探索的能力和清晰的邏輯思維能力以及強大的計算能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

正方形ABCD在如圖所示的平面直角坐標系中,A在x軸正半軸上,D在y軸的負半軸上,AB交y軸正半軸于E,BC交x軸負半軸于F,OE=1,OD=4,拋物線y=ax2+bx-4過A、D、F三點.
(1)求拋物線的解析式;
(2)Q是拋物線上D、F間的一點,過Q點作平行于x軸的直線交邊AD于M,交BC所在直線于N,若S四邊形AFQM=
32
S△FQN,則判斷四邊形AFQM的形狀;
(3)在射線DB上是否存在動點P,在射線CB上是否存在動點H,使得AP⊥PH且AP=PH?若存在,請給予嚴格證明;若不存在,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源:湖北省中考真題 題型:解答題

正方形ABCD在如圖所示的平面直角坐標系中,A在x軸正半軸上,D在y軸的負半軸上,AB交y軸正半軸于E,BC交x軸負半軸于F,OE=1,OD=4,拋物線y=ax2+bx-4過A、D、F三點。
(1)求拋物線的解析式;
(2)Q是拋物線上D、F間的一點,過Q點作平行于x軸的直線交邊AD于M,交BC所在直線于N,若S四邊形AFQM=S△FQN,則判斷四邊形AFQM的形狀;
(3)在射線DB上是否存在動點P,在射線CB上是否存在動點H,使得AP⊥PH且AP=PH,若存在,請給予嚴格證明,若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(32):2.7 最大面積是多少(解析版) 題型:解答題

正方形ABCD在如圖所示的平面直角坐標系中,A在x軸正半軸上,D在y軸的負半軸上,AB交y軸正半軸于E,BC交x軸負半軸于F,OE=1,OD=4,拋物線y=ax2+bx-4過A、D、F三點.
(1)求拋物線的解析式;
(2)Q是拋物線上D、F間的一點,過Q點作平行于x軸的直線交邊AD于M,交BC所在直線于N,若S四邊形AFQM=S△FQN,則判斷四邊形AFQM的形狀;
(3)在射線DB上是否存在動點P,在射線CB上是否存在動點H,使得AP⊥PH且AP=PH?若存在,請給予嚴格證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:第20章《二次函數和反比例函數》中考題集(32):20.5 二次函數的一些應用(解析版) 題型:解答題

正方形ABCD在如圖所示的平面直角坐標系中,A在x軸正半軸上,D在y軸的負半軸上,AB交y軸正半軸于E,BC交x軸負半軸于F,OE=1,OD=4,拋物線y=ax2+bx-4過A、D、F三點.
(1)求拋物線的解析式;
(2)Q是拋物線上D、F間的一點,過Q點作平行于x軸的直線交邊AD于M,交BC所在直線于N,若S四邊形AFQM=S△FQN,則判斷四邊形AFQM的形狀;
(3)在射線DB上是否存在動點P,在射線CB上是否存在動點H,使得AP⊥PH且AP=PH?若存在,請給予嚴格證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(33):2.4 二次函數的應用(解析版) 題型:解答題

正方形ABCD在如圖所示的平面直角坐標系中,A在x軸正半軸上,D在y軸的負半軸上,AB交y軸正半軸于E,BC交x軸負半軸于F,OE=1,OD=4,拋物線y=ax2+bx-4過A、D、F三點.
(1)求拋物線的解析式;
(2)Q是拋物線上D、F間的一點,過Q點作平行于x軸的直線交邊AD于M,交BC所在直線于N,若S四邊形AFQM=S△FQN,則判斷四邊形AFQM的形狀;
(3)在射線DB上是否存在動點P,在射線CB上是否存在動點H,使得AP⊥PH且AP=PH?若存在,請給予嚴格證明;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案