已知,點(diǎn)的坐標(biāo)為,關(guān)于的二次函數(shù)圖象的頂點(diǎn)為,圖象交軸于兩點(diǎn),交軸正半軸于點(diǎn).以為直徑作圓,其圓心為

(1)寫出三點(diǎn)的坐標(biāo)(可用含的代數(shù)式表示);
(2)當(dāng)為何值時(shí)點(diǎn)在直線上?判定此時(shí)直線與圓的位置關(guān)系?
(3)連接,當(dāng)變化時(shí),試用表示的面積,并在給出的直角坐標(biāo)系中畫出S關(guān)于m的函數(shù)圖象的示意圖.

(1)(2)當(dāng)時(shí),點(diǎn)在直線 上,直線相切,(3)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A是函數(shù)y=
1
x
的圖象上的點(diǎn),點(diǎn)B、C的坐標(biāo)分別為B(-
2
,-
2
)、C(
2
2
),試?yán)眯再|(zhì):“函數(shù)y=
1
x
的圖象上任意一點(diǎn)A都滿足|AB-AC|=2
2
”求解下面問題:作∠BAC的內(nèi)角平分線AE,過B作AE的垂線交AE于F,已知當(dāng)點(diǎn)A在函數(shù)y=
1
x
的圖象上運(yùn)動(dòng)時(shí),點(diǎn)F總在一個(gè)圓上運(yùn)動(dòng),則這圓的半徑為( 。
A、1
B、
2
2
C、
2
D、
3
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,點(diǎn)的坐標(biāo)為,關(guān)于的二次函數(shù)圖象的頂點(diǎn)為,圖象交軸于兩點(diǎn),交軸正半軸于點(diǎn).以為直徑作圓,其圓心為

(1)寫出三點(diǎn)的坐標(biāo)(可用含的代數(shù)式表示);

(2)當(dāng)為何值時(shí)點(diǎn)在直線上?判定此時(shí)直線與圓的位置關(guān)系?

(3)連接,當(dāng)變化時(shí),試用表示的面積,并在給出的直角坐標(biāo)系中畫出S關(guān)于m的函數(shù)圖象的示意圖.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,點(diǎn)的坐標(biāo)為,關(guān)于的二次函數(shù)圖象的頂點(diǎn)為,圖象交軸于兩點(diǎn),交軸正半軸于點(diǎn).以為直徑作圓,其圓心為

(1)寫出三點(diǎn)的坐標(biāo)(可用含的代數(shù)式表示);
(2)當(dāng)為何值時(shí)點(diǎn)在直線上?判定此時(shí)直線與圓的位置關(guān)系?
(3)連接,當(dāng)變化時(shí),試用表示的面積,并在給出的直角坐標(biāo)系中畫出S關(guān)于m的函數(shù)圖象的示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省廣州市番禺區(qū)中考一模數(shù)學(xué)卷(解析版) 題型:解答題

已知,點(diǎn)的坐標(biāo)為,關(guān)于的二次函數(shù)圖象的頂點(diǎn)為,圖象交軸于兩點(diǎn),交軸正半軸于點(diǎn).以為直徑作圓,其圓心為

(1)寫出三點(diǎn)的坐標(biāo)(可用含的代數(shù)式表示);

(2)當(dāng)為何值時(shí)點(diǎn)在直線上?判定此時(shí)直線與圓的位置關(guān)系?

(3)連接,當(dāng)變化時(shí),試用表示的面積,并在給出的直角坐標(biāo)系中畫出S關(guān)于m的函數(shù)圖象的示意圖.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案