如圖1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分線BE交AC于E.
(1)求證:AE=BC;
(2)如圖(2),過點E作EF∥BC交AB于F,將△AEF繞點A逆時針旋轉(zhuǎn)角α(0°<α<144°)得到△AE′F′,連結(jié)CE′,BF′,求證:CE′=BF′;
(3)在(2)的旋轉(zhuǎn)過程中是否存在CE′∥AB?若存在,求出相應(yīng)的旋轉(zhuǎn)角α;若不存在,請說明理由.
解:(1)證明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°。
又∵BE平分∠ABC,∴∠ABE=∠CBE=36°。
∴∠BEC=180°﹣∠C﹣∠CBE=72°。∴∠ABE=∠A,∠BEC=∠C。
∴AE=BE,BE=BC!郃E=BC。
(2)證明:∵AC=AB且EF∥BC,∴AE=AF;
由旋轉(zhuǎn)的性質(zhì)可知:∠E′AC=∠F′AB,AE′=AF′,
∵在△CAE′和△BAF′中,,
∴△CAE′≌△BAF′!郈E′=BF′。
(3)存在CE′∥AB。
由(1)可知AE=BC,所以,在△AEF繞點A逆時針旋轉(zhuǎn)過程中,E點經(jīng)過的路徑(圓。┡c過點C且與AB平行的直線l交于M、N兩點,
如圖:①當(dāng)點E的像E′與點M重合時,則四邊形ABCM為等腰梯形,
∴∠BAM=∠ABC=72°,又∠BAC=36°。
∴α=∠CAM=36°。
②當(dāng)點E的像E′與點N重合時,
由AB∥l得,∠AMN=∠BAM=72°,
∵AM=AN,∴∠ANM=∠AMN=72°。
∴∠MAN=180°﹣2×72°=36°。
∴α=∠CAN=∠CAM+∠MAN=72°。
∴當(dāng)旋轉(zhuǎn)角為36°或72°時,CE′∥AB。
【解析】(1)根據(jù)等腰三角形的性質(zhì)以及角平分線的性質(zhì)得出對應(yīng)角之間的關(guān)系進(jìn)而得出答案。
(2)由旋轉(zhuǎn)的性質(zhì)可知:∠E′AC=∠F′AB,AE′=AF′,根據(jù)全等三角形證明方法得出即可。
(3)分別根據(jù)①當(dāng)點E的像E′與點M重合時,則四邊形ABCM為等腰梯形,②當(dāng)點E的像E′與點N重合時,求出α即可。
科目:初中數(shù)學(xué) 來源: 題型:
PE |
CE |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
BC2+CD2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
DE |
BD |
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com