【題目】如圖正方形ABCD的邊長為4,E、F分別為DC、BC中點.
(1)求證:△ADE≌△ABF.
(2)求△AEF的面積.
【答案】
(1)
證明:∵四邊形ABCD為正方形,
∴AB=AD,∠=90°,DC=CB,
∵E、F為DC、BC中點,
∴DE= DC,BF= BC,
∴DE=BF,
∵在△ADE和△ABF中,
,
∴△ADE≌△ABF(SAS);
(2)
解:由題知△ABF、△ADE、△CEF均為直角三角形,
且AB=AD=4,DE=BF= ×4=2,CE=CF= ×4=2,
∴S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF
=4×4﹣ ×4×2﹣ ×4×2﹣ ×2×2
=6.
【解析】(1)由四邊形ABCD為正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分別為DC、BC中點,得出DE=BF,進而證明出兩三角形全等;(2)首先求出DE和CE的長度,再根據(jù)S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF得出結(jié)果.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給下以下結(jié)論: ①2a﹣b=0;
②9a+3b+c<0;
③關(guān)于x的一元二次方程ax2+bx+c+3=0有兩個相等實數(shù)根;
④8a+c<0.
其中正確的個數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形ABC中,點D、E、F、分別為邊AB,AC,BC的中點,M為直線BC動點,△DMN為等邊三角形
(1)如圖1,當點M在點B左側(cè)時,請你判斷EN與MF有怎樣的數(shù)量關(guān)系?
(2)如圖2,當點M在BC上時,其它條件不變,(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請利用圖2證明;若不成立請說明理由;
(3)若點M在點C右側(cè)時,請你在圖3中畫出相應(yīng)的圖形,并判斷(1)的結(jié)論是否仍然成立?若成立,請直接寫出結(jié)論,若不成立請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AB⊥BD, = ,將ABCD放置在平面直角坐標系中,且AD⊥x軸,點D的橫坐標為1,點C的縱坐標為3,恰有一條雙曲線 (k>0)同時經(jīng)過B、D兩點,則點B的坐標是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在密碼學中,直接可以看到內(nèi)容為明碼,對明碼進行某種處理后得到的內(nèi)容為密碼.有一種密碼,將英文的26個字母a、b、c,…,z依次對應(yīng)1、2、3,…,26這26個自然數(shù)(見表格),當明碼對應(yīng)的序號x為奇數(shù)時,密碼對應(yīng)的序號 ;當明碼對應(yīng)的序號x為偶數(shù)時,密碼對應(yīng)的序號 .
字母 | a | b | c | d | e | f | g | h | i | j | k | l | m |
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
字母 | n | o | p | q | r | s | t | u | v | w | x | y | z |
序號 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
按上述規(guī)定,將明碼“bird”譯成密碼是( )
A.bird
B.nove
C.sdri
D.nevo
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司需招聘一名員工,對應(yīng)聘者甲、乙、丙從筆試、面試、體能三個方面進行量化考核.甲、乙、丙各項得分如下表:
筆試 | 面試 | 體能 | |
甲 | 83 | 79 | 90 |
乙 | 85 | 80 | 75 |
丙 | 80 | 90 | 73 |
(1)根據(jù)三項得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.
(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計入總分.根據(jù)規(guī)定,請你說明誰將被錄用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一堂關(guān)于“折紙問題”的數(shù)學綜合實踐探究課中,小明同學將一張矩形ABCD紙片,按如圖進行折疊,分別在BC、AD兩邊上取兩點E,F(xiàn),使CE=AF,分別以DE,BF為對稱軸將△CDE與△ABF翻折得到△C′DE與△A′BF,且邊C′E與A′B交于點G,邊A′F與C′D交于一點H.已知tan∠EBG= ,A′G=6,C′G=1,則矩形紙片ABCD的周長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD中,AB=3cm,AD=6cm,∠ADC的角平分線DE交BC于點E,交AC于點F,CG⊥DE,垂足為G,DG= cm,則EF的長為( )
A.2cm
B. cm
C.1cm
D. cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當陽光與水平線成45°角時,測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com