精英家教網 > 初中數學 > 題目詳情

已知二次函數f(x)滿足f(1+x)=f(1-x),且f(0)=0,f(1)=1,則f(x)=________.

-x2+2x
分析:設f(x)=ax2+bx+c(a≠0),然后根據二次函數圖象的對稱性找出對稱軸方程、由已知條件求出c、a的值.利用待定系數法求得f(x).
解答:設f(x)=ax2+bx+c(a≠0).
由f(1+x)=f(1-x),知
f(x)關于x=1對稱,所以-=1,即b=-2a,①
∵f(0)=0,
∴c=0;②
又∵f(1)=1,
∴f(1)=a-2a=-a=1,
解得,a=-1③
由①③解得,b=2
由①②③,得
f(x)=-x2+2x;
故答案是:-x2+2x.
點評:本題考查了二次函數圖象上點的坐標特征.解答該題的關鍵是根據已知條件“f(1+x)=f(1-x)”求得該二次函數的對稱軸方程.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知二次函數y=-x2+bx+c的圖象過點A(1,2),B(3,2),C(0,-1),D(2,3).點P(x1,y1),Q(x2,y2)也在該函數的圖象上,當0<x1<1,2<x2<3時,y1與y2的大小關系正確的是( 。
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數的圖象經過點(0,3),頂點坐標為(1,4),
(1)求這個二次函數的解析式;
(2)求圖象與x軸交點A、B兩點的坐標;
(3)圖象與y軸交點為點C,求三角形ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•莒南縣二模)已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數).
其中正確的結論有( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:①ac>0;②a-b+c<0;
③當x<0時,y<0;④方程ax2+bx+c=0(a≠0)有兩個大于-1的實數根;⑤2a+b=0.其中,正確的說法有
②④⑤
②④⑤
.(請寫出所有正確說法的序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,已知A點坐標為(-1,0),且對稱軸為直線x=2,則B點坐標為
(5,0)
(5,0)

查看答案和解析>>

同步練習冊答案