如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C的坐標(biāo)分別為(-1,0)、(0,-
3
),點(diǎn)B在x軸上.已知某二次函數(shù)的圖象經(jīng)過A、B、C三點(diǎn),且它的對(duì)稱軸為直線x=1.
(1)求該二次函數(shù)的解析式;
(2)點(diǎn)D為直線BC下方的二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D與B、C不重合),過點(diǎn)D作y軸的平行線交BC于點(diǎn)E,設(shè)點(diǎn)D的橫坐標(biāo)為m,DE=n,n與m的函數(shù)關(guān)系式;
(3)點(diǎn)M在y軸上,點(diǎn)N在拋物線上.是否存在以M、N、A、B四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
分析:(1)根據(jù)二次函數(shù)的對(duì)稱性求出點(diǎn)B的坐標(biāo),再利用待定系數(shù)法求二次函數(shù)解析式解答即可;
(2)根據(jù)拋物線解析式求出點(diǎn)D的縱坐標(biāo),再利用待定系數(shù)法求求出直線BC的解析式,然后求出點(diǎn)E的縱坐標(biāo),然后用點(diǎn)E的縱坐標(biāo)減去點(diǎn)D的縱坐標(biāo),整理即可得解;
(3)分①AB是平行四邊形的邊時(shí),先求出AB的長(zhǎng)度,再根據(jù)平行四邊形的對(duì)邊相等求出點(diǎn)N的橫坐標(biāo),然后利用拋物線解析式計(jì)算求出縱坐標(biāo),從而得解;②AB是對(duì)角線時(shí),根據(jù)平行四邊形的對(duì)角線互相平分求出點(diǎn)N的橫坐標(biāo),然后利用拋物線解析式計(jì)算求出縱坐標(biāo),從而得解.
解答:解:(1)設(shè)二次函數(shù)的解析式為y=ax2+bx+c(a≠0,a、b、c為常數(shù)),
由拋物線的對(duì)稱性知B點(diǎn)坐標(biāo)為(3,0),
依題意得,
a-b+c=0
9a+3b+c=0
c=-
3
,
解得
a=
3
3
b=-
2
3
3
c=-
3
,
所以,二次函數(shù)的解析式為y=
3
3
x2-
2
3
3
x-
3
;

(2)∵點(diǎn)D的橫坐標(biāo)為m,
∴點(diǎn)D的縱坐標(biāo)為
3
3
m2-
2
3
3
m-
3

設(shè)直線BC的解析式為y=kx+b′(k≠0,k、b′是常數(shù)),
依題意得,
3k+b′=0
b′=-
3
,
解得
k=
3
3
b′=-
3

所以,直線BC的解析式為y=
3
3
x-
3

∴點(diǎn)E的坐標(biāo)為(m,
3
3
m-
3
),
∴DE的長(zhǎng)度n=
3
3
m-
3
-(
3
3
m2-
2
3
3
m-
3
)=
3
3
m2-
3
m,
∵點(diǎn)D在直線BC下方,
∴0<m<3;

(3)①AB是平行四邊形的邊時(shí),
∵A(-1,0)、B(3,0),
∴AB=3-(-1)=4,
若點(diǎn)N在y軸的左邊,則點(diǎn)N的橫坐標(biāo)為-4,
所以,y=
3
3
×(-4)2-
2
3
3
×(-4)-
3
=7
3

此時(shí),點(diǎn)N的坐標(biāo)為(-4,7
3
),
若點(diǎn)N在y軸的右邊,則點(diǎn)N的橫坐標(biāo)為4,
所以,y=
3
3
×42-
2
3
3
×4-
3
=
5
3
3

此時(shí),點(diǎn)N的坐標(biāo)為(4,
5
3
3
);
②AB是對(duì)角線時(shí),∵點(diǎn)M在y軸上,拋物線對(duì)稱軸為直線x=1,
∴點(diǎn)N的橫坐標(biāo)為2,
∴y=
3
3
×22-
2
3
3
×2-
3
=-
3
,
此時(shí),點(diǎn)N的坐標(biāo)為(2,-
3
);
綜上所述,點(diǎn)N的坐標(biāo)為(-4,7
3
)或(4,
5
3
3
)或(2,-
3
).
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,主要考查了二次函數(shù)的對(duì)稱性,待定系數(shù)法求二次函數(shù)解析式,待定系數(shù)法求一次函數(shù)解析式,兩點(diǎn)間的距離,平行四邊形對(duì)邊相等,對(duì)角線互相平分的性質(zhì),(3)要分情況討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案