如圖,四邊形ABCD是平行四邊形,AE⊥BC,AF⊥CD,垂足分別為E、F,連接EF.
求證:(1)AB•AF=AE•AD;
(2)

【答案】分析:(1)根據(jù)平行四邊形的性質(zhì)得出∠B=∠D,再利用∠AEB=∠AFD=90°,得出△ABE∽△ADF,進(jìn)而得出AB•AF=AE•AD;
(2)根據(jù)平行四邊形的性質(zhì)得出AB∥CD,進(jìn)而得出∠B=∠EAF,即可得出,即可得出△ABC∽△EAF,即可得出答案.
解答:證明:(1)∵四邊形ABCD是平行四邊形,
∴∠B=∠D,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,
∴△ABE∽△ADF,

∴AB•AF=AE•AD;

(2)∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠BAF=∠AFD=90°,
∵∠B+∠BAE=90°,∠EAF+∠BAE=90°,
∴∠B=∠EAF,
∵△ABE∽△ADF,

∵AD=BC,
,
∴△ABC∽△EAF,

點(diǎn)評(píng):此題主要考查了相似三角形的判定與性質(zhì)以及平行四邊形的性質(zhì)等知識(shí),根據(jù)已知得出AD=BC是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案