如圖,已知二次函數(shù)的圖象過點A(0,﹣3),B(),對稱軸為直線,點P是拋物線上的一動點,過點P分別作PM⊥x軸于點M,PN⊥y軸于點N,在四邊形PMON上分別截取PC=MP,MD=OM,OE=ON,NF=NP.

(1)求此二次函數(shù)的解析式;

(2)求證:以C、D、E、F為頂點的四邊形CDEF是平行四邊形;

(3)在拋物線上是否存在這樣的點P,使四邊形CDEF為矩形?若存在,請求出所有符合條件的P點坐標(biāo);若不存在,請說明理由.

 

【答案】

(1)。

(2)證明△PCF≌△OED,得CF=DE;證明△CDM≌△FEN,得C D=EF.這樣四邊形CDEF兩組對邊分別對應(yīng)相等,所以四邊形CDEF是平行四邊形。

(3)拋物線上存在點P,使四邊形CDEF為矩形.這樣的點有四個,在四個坐標(biāo)象限內(nèi)各一個,其坐標(biāo)分別為:P1),P2),P3(﹣3,3),P4(1,﹣1)

【解析】

分析:(1)利用頂點式和待定系數(shù)法求出拋物線的解析式。

(2)證明△PCF≌△OED,得CF=DE;證明△CDM≌△FEN,得C D=EF.這樣四邊形CDEF兩組對邊分別對應(yīng)相等,所以四邊形CDEF是平行四邊形。

(3)根據(jù)已知條件,利用相似三角形△PCF∽△MDC,可以證明矩形PMON是正方形.這樣點P就是拋物線y=x2+x﹣3與坐標(biāo)象限角平分線y=x或y=﹣x的交點,聯(lián)立解析式解方程組,分別求出點P的坐標(biāo).符合題意的點P有四個,在四個坐標(biāo)象限內(nèi)各一個。

解:(1)∵二次函數(shù)圖象的對稱軸為直線,∴設(shè)二次函數(shù)的解析式為:,

∵點A(0,﹣3),B()在拋物線上,

,解得:。

∴拋物線的解析式為:,即。

(2)證明:如圖,連接CD、DE、EF、FC,

∵PM⊥x軸于點M,PN⊥y軸于點N,

∴四邊形PMON為矩形。

∴PM=ON,PN=OM。

∵PC=MP,OE=ON,∴PC=OE。

∵M(jìn)D=OM,NF=NP,∴MD=NF。

∴PF=OD。

∵在△PCF與△OED中,,

∴△PCF≌△OED(SAS)!郈F=DE。

同理可證:△CDM≌△FEN,∴CD=EF。

∵CF=DE,CD=EF,∴四邊形CDEF是平行四邊形。

(3)假設(shè)存在這樣的點P,使四邊形CDEF為矩形,

設(shè)矩形PMON的邊長PM=ON=m,PN=OM=n,

則PC=m,MC=m,MD=n,PF=n.

若四邊形CDEF為矩形,則∠DCF=90°,易證△PCF∽△MDC,

,即,化簡得:m2=n2。

∴m=n,即矩形PMON為正方形。

∴點P為拋物線與坐標(biāo)象限角平分線y=x或y=﹣x的交點。

聯(lián)立,解得

∴P1),P2)。

聯(lián)立,解得。

∴P3(﹣3,3),P4(1,﹣1)。

∴拋物線上存在點P,使四邊形CDEF為矩形.這樣的點有四個,在四個坐標(biāo)象限內(nèi)各一個,其坐標(biāo)分別為:P1),P2),P3(﹣3,3),P4(1,﹣1)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象經(jīng)過點A(3,3)、B(4,0)和原點O.P為二次函數(shù)圖象上精英家教網(wǎng)的一個動點,過點P作x軸的垂線,垂足為D(m,0),并與直線OA交于點C.
(1)求出二次函數(shù)的解析式;
(2)當(dāng)點P在直線OA的上方時,求線段PC的最大值;
(3)當(dāng)m>0時,探索是否存在點P,使得△PCO為等腰三角形,如果存在,求出P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•呼和浩特)如圖,已知二次函數(shù)的圖象經(jīng)過點A(6,0)、B(-2,0)和點C(0,-8).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點為M,若點K為x軸上的動點,當(dāng)△KCM的周長最小時,點K的坐標(biāo)為
6
7
,0)
6
7
,0)
;
(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當(dāng)P、Q兩點相遇時,它們都停止運動,設(shè)P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,直接寫出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常德)如圖,已知二次函數(shù)的圖象過點A(0,-3),B(
3
,
3
),對稱軸為直線x=-
1
2
,點P是拋物線上的一動點,過點P分別作PM⊥x軸于點M,PN⊥y軸于點N,在四邊形PMON上分別截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函數(shù)的解析式;
(2)求證:以C、D、E、F為頂點的四邊形CDEF是平行四邊形;
(3)在拋物線上是否存在這樣的點P,使四邊形CDEF為矩形?若存在,請求出所有符合條件的P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象與x軸交于A(2,0)、B(6,0)兩點,與y軸交于點D(0,4).
(1)求該二次函數(shù)的表達(dá)式;
(2)寫出該拋物線的頂點C的坐標(biāo);
(3)求四邊形ACBD的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象(0≤x≤3.4),關(guān)于該函數(shù)在所給自變量的取值范圍內(nèi),下列說法正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案