把一邊長(zhǎng)為40cm的正方形硬紙板,進(jìn)行適當(dāng)?shù)募舨,折成一個(gè)長(zhǎng)方形盒子(紙板的厚度忽略不計(jì)).如圖,若在正方形硬紙板的四角各剪一個(gè)同樣大小的正方形,將剩余部分折成一個(gè)無(wú)蓋的長(zhǎng)方形盒子.

(1)要使折成的長(zhǎng)方形盒子的底面積為324cm2,那么剪掉的正方形的邊長(zhǎng)為多少?
(2)折成的長(zhǎng)方形盒子的側(cè)面積是否有最大值?如果有,求出這個(gè)最大值和此時(shí)剪掉的正方形的邊長(zhǎng);如果沒(méi)有,說(shuō)明理由.
分析:(1)利用已知圖形利用邊長(zhǎng)與面積之間的關(guān)系得出解析式即可;
(2)利用長(zhǎng)方形盒子的側(cè)面積為:(40-2x)×x×4得出即可.
解答:解:(1)設(shè)剪掉的正方形的邊長(zhǎng)為xcm,則
(40-2x)2=324,
解得:x1=29(不合題意舍去),x2=11,
答:剪掉的正方形的邊長(zhǎng)為11cm;

(2)側(cè)面積有最大值,設(shè)剪掉的正方形的邊長(zhǎng)為xcm,則
盒子的側(cè)面積y=4(40-2x)x=-8x2+160x=-8(x-10)2+800,
∴當(dāng)x=10時(shí),y最大=800,
即當(dāng)剪掉的正方形邊長(zhǎng)為10cm時(shí),長(zhǎng)方形盒子的側(cè)面最大為800cm2
點(diǎn)評(píng):此題主要考查了二次函數(shù)的應(yīng)用,利用已知得出剪掉的正方形邊長(zhǎng)與側(cè)面積的函數(shù)關(guān)系式是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把一邊長(zhǎng)為40cm的正方形硬紙板,進(jìn)行適當(dāng)?shù)募舨,折成一個(gè)長(zhǎng)方體盒子(紙板的厚度忽略不計(jì)).如圖,若在正方形硬紙板的四角各剪一個(gè)同樣大小的正方形,將剩余部分折成一個(gè)無(wú)蓋的長(zhǎng)方形盒子.
(1)折成的長(zhǎng)方形盒子的側(cè)面積是否有最大值?如果有,求出這個(gè)最大值和此時(shí)剪掉的正方形的邊長(zhǎng);如果沒(méi)有,說(shuō)明理由.
(2)若在正方形硬紙板的四周剪掉一些矩形(即剪掉的矩形至少有一條邊在正方形硬紙板的邊上),將剩余部分折成一個(gè)有蓋的長(zhǎng)方形盒子,折成的長(zhǎng)方形盒子的側(cè)面積是否有最大值?如果有,求出這個(gè)最大值和此時(shí)剪掉的正方形的邊長(zhǎng);如果沒(méi)有,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•紹興)把一邊長(zhǎng)為40cm的正方形硬紙板,進(jìn)行適當(dāng)?shù)募舨茫鄢梢粋(gè)長(zhǎng)方形盒子(紙板的厚度忽略不計(jì)).
(1)如圖,若在正方形硬紙板的四角各剪一個(gè)同樣大小的正方形,將剩余部分折成一個(gè)無(wú)蓋的長(zhǎng)方形盒子.
①要使折成的長(zhǎng)方形盒子的底面積為484cm2,那么剪掉的正方形的邊長(zhǎng)為多少?
②折成的長(zhǎng)方形盒子的側(cè)面積是否有最大值?如果有,求出這個(gè)最大值和此時(shí)剪掉的正方形的邊長(zhǎng);如果沒(méi)有,說(shuō)明理由.
(2)若在正方形硬紙板的四周剪掉一些矩形(即剪掉的矩形至少有一條邊在正方形硬紙板的邊上),將剩余部分折成一個(gè)有蓋的長(zhǎng)方形盒子,若折成的一個(gè)長(zhǎng)方形盒子的表面積為550cm2,求此時(shí)長(zhǎng)方形盒子的長(zhǎng)、寬、高(只需求出符合要求的一種情況).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把一邊長(zhǎng)為40cm的正方形硬紙板,四角各剪一個(gè)同樣大小的正方形,剩余部分可折成一個(gè)底面積為484cm2無(wú)蓋的長(zhǎng)方體盒子,那么剪掉的正方形的邊長(zhǎng)為多少?(紙板的厚度忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,把一邊長(zhǎng)為40cm的正方形硬紙板的四角各剪去一個(gè)同樣大小的正方形,將剩余部分折成一個(gè)無(wú)蓋的盒子.
(1)要使折成的盒子底面積為484cm2,那么剪掉的正方形邊長(zhǎng)為多少?
(2)折成的長(zhǎng)方形盒子的側(cè)面積是否有最大值?如果有,求出這個(gè)最大值和此時(shí)剪掉的正方形邊長(zhǎng);如果沒(méi)有,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案