【題目】已知:如圖,在△ABC中,AB=BC=10,以AB為直徑作⊙O分別交AC,BC于點(diǎn)D,E,連接DE和DB,過點(diǎn)E作EF⊥AB,垂足為F,交BD于點(diǎn)P.
(1)求證:AD=DE;
(2)若CE=2,求線段CD的長(zhǎng);
(3)在(2)的條件下,求△DPE的面積.
【答案】
(1)解:∵AB是⊙O的直徑,
∴∠ADB=90°,即BD⊥AC
∵AB=BC,
∴BD是等腰△ABC中線,
∴AD=DE;
(2)解:∵四邊形ABED內(nèi)接于⊙O,∴∠CED=∠CAB,
∵∠C=∠C,∴△CED∽△CAB,∴ ,
∵AB=BC=10,CE=2,D是AC的中點(diǎn),
∴CD= ;
(3)解:延長(zhǎng)EF交⊙O于M,
在Rt△ABD中,AD= ,AB=10,
∴BD=3 ,
∵EM⊥AB,AB是⊙O的直徑,
∴ ,
∴∠BEP=∠EDB,
∴△BPE∽△BED,
∴ ,
∴BP= ,
∴DP=BD-BP= ,
∴S△DPE:S△BPE=DP:BP=13:32,
∵S△BCD= × ×3 =15,S△BDE:S△BCD=BE:BC=4:5,
∴S△BDE=12,
∴S△DPE= .
【解析】(1)根據(jù)已知條件AB是⊙O的直徑得出∠ADB=90°,再根據(jù)等腰三角形的三線合一的性質(zhì)即可得出結(jié)論。
(2)根據(jù)圓內(nèi)接四邊形的性質(zhì)證得∠CED=∠CAB,再根據(jù)相似三角形的判定證出△CED∽△CAB,得出對(duì)應(yīng)邊成比例,建立關(guān)于CD的方程,即可求出CD的長(zhǎng)。
(3)延長(zhǎng)EF交⊙O于M,在Rt△ABD中,利用勾股定理求出BD的長(zhǎng),再證明△BPE∽△BED,根據(jù)相似三角形的性質(zhì)得對(duì)應(yīng)邊成比例求出BP的長(zhǎng),然后根據(jù)等高的三角形的面積之比等于對(duì)邊之比,再由三角形面積公式即可求解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在⊙O中. AE直徑,AD是弦,B為AE延長(zhǎng)線上--點(diǎn),作BC⊥AD,與AD延長(zhǎng)線交于點(diǎn)C.且∠CBD=∠A.
(1)判斷直線BD與⊙0的位置關(guān)系,并證明你的結(jié)論;
(2)若∠A=30 ,OA=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為給研究制定《中考改革實(shí)施方案》提出合理化建議,教研人員對(duì)九年級(jí)學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,要求被抽查的學(xué)生從物理、化學(xué)、政治、歷史、生物和地理這六個(gè)選考科目中,挑選出一科作為自己的首選科目,將調(diào)查數(shù)據(jù)匯總整理后,繪制出了如圖的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)被抽查的學(xué)生共有多少人?
(2)將折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)我市現(xiàn)有九年級(jí)學(xué)生約40000人,請(qǐng)你估計(jì)首選科目是物理的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,為邊上的一點(diǎn),,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿著邊向終點(diǎn)運(yùn)動(dòng),連接.設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒.
(1)求的長(zhǎng);
(2)當(dāng)為多少秒時(shí),是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“化歸與轉(zhuǎn)化的思想”是指在研究解決數(shù)學(xué)問題時(shí)采用某種手段將問題通過變換使之轉(zhuǎn)化,進(jìn)而使問題得到解決:
(1)我們知道m2+n2=0可以得到m=0,n=0.如果a2+b2+2a﹣4b+5=0,求a、b的值.
(2)已知ax+2017,bx+2015,cx+2016,試問:多項(xiàng)式a2+b2+c2﹣ab﹣ac﹣bc的值是否與變量x的取值有關(guān)?若有關(guān)請(qǐng)說明理由;若無關(guān)請(qǐng)求出多項(xiàng)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了節(jié)約用水,采用分段收費(fèi)標(biāo)準(zhǔn).若某戶居民每月應(yīng)交水費(fèi)y(元)與用水量x(立方米)之間關(guān)系的圖象如圖所示,根據(jù)圖象回答:
(1)該市自來水收費(fèi),每戶用水不超過5立方米時(shí),每立方米收費(fèi)多少元?超過5立方米時(shí),超過的部分每立方米收費(fèi)多少元?
(2)求出y與x之間的關(guān)系式.
(3)若某戶居民某月用水量為3.5立方米,則應(yīng)交水費(fèi)多少元?若某戶居民某月交水費(fèi)17元,則該戶居民用水多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A在函數(shù)y1=﹣ (x>0)的圖象上,點(diǎn)B在直線y2=kx+1+k(k為常數(shù),且k≥0)上.若A,B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)A,B為函數(shù)y1 , y2圖象上的一對(duì)“友好點(diǎn)”.請(qǐng)問這兩個(gè)函數(shù)圖象上的“友好點(diǎn)”對(duì)數(shù)的情況為( )
A.有1對(duì)或2對(duì)
B.只有1對(duì)
C.只有2對(duì)
D.有2對(duì)或3對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com