四邊形ABCD中,點E是AB的中點,F是AD邊上的動點.連結(jié)DE、CF.
(1)若四邊形ABCD是矩形,AD=12,CD=10,如圖(1)所示.

①請直接寫出AE的長度;
②當(dāng)DE⊥CF時,試求出CF長度.
(2)如圖(2),若四邊形ABCD是平行四邊形,DE與CF相交于點P.
探究:當(dāng)∠B與∠PC滿足什么關(guān)系時,成立?并證明你的結(jié)論.

(1)①AE ="5;" ②CF=;
(2)當(dāng)∠B+∠EPC=180°時,成立.證明見解析.

解析試題分析:(1) ①四邊形ABCD是矩形, CD=10,點E是AB的中點,可得:AE=CD=5;
②根據(jù)已知證得△AED∽△DFC,;利用相似三角形對應(yīng)邊成比例即可;
(2)當(dāng)∠B+∠EPC=180°時,成立.根據(jù)已知證得:△DFP∽△DEA,△CPD∽△CDF,再根據(jù)對應(yīng)邊成比例即可.
試題解析:(1)①∵四邊形ABCD是矩形, CD=10,點E是AB的中點,
∴AE=CD=5;
②∵四邊形ABCD是矩形,
∴∠A=∠FDC=90°,
∵CF⊥DE,
∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,
∴∠CFD=∠AED,
∵∠A=∠CDF,
∴△AED∽△DFC

在△AED中,∠A =90°,AD=12,AE =5,


CF=;
(2)當(dāng)∠B+∠EPC=180°時,成立.
∵四邊形ABCD是平行四邊形,
∴∠B=∠ADC,AD∥BC,
∴∠B+∠A=180°,
∵∠B+∠EPC=180°,
∴∠A=∠EPC=∠FPD,
∵∠FDP=∠EDA,
∴△DFP∽△DEA,
,
∵∠B=∠ADC,∠B+∠EPC=180°,∠EPC+∠DPC=180°,
∴∠CPD=∠CDF,
∵∠PCD=∠DCF,
∴△CPD∽△CDF,
,
,
,
即當(dāng)∠B+∠EPC=180°時,成立.
考點:相似形綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標(biāo)分別為(-2,4),(2,1).
(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)請作出△ABC關(guān)于y軸對稱的△A′B′C′;
(3)若△ADE是△ABC關(guān)于點A的位似圖形,且E的坐標(biāo)為(6,-2),則點D的坐標(biāo)為     , 四邊形BCED面積是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在Rt△ABC中,AB=AC=4.一動點P從點B出發(fā),沿BC方向以每秒1個單位長度的速度勻速運動,到達(dá)點C即停止.在整個運動過程中,過點P作PD⊥BC與Rt△ABC的直角邊相交于點D,延長PD至點Q,使得PD=QD,以PQ為斜邊在PQ左側(cè)作等腰直角三角形PQE.設(shè)運動時間為t秒(t>0).

(1)在整個運動過程中,設(shè)△ABC與△PQE重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式以及相應(yīng)的自變量t的取值范圍;
(2)當(dāng)點D在線段AB上時,連接AQ、AP,是否存在這樣的t,使得△APQ成為等腰三角形?若存在,求出對應(yīng)的t的值;若不存在,請說明理由;
(3)當(dāng)t=4秒時,以PQ為斜邊在PQ右側(cè)作等腰直角三角形PQF,將四邊形PEQF繞點P旋轉(zhuǎn),PE與線段AB相交于點M,PF與線段AC相交于點N.試判斷在這一旋轉(zhuǎn)過程中,四邊形PMAN的面積是否發(fā)生變化?若發(fā)生變化,求出四邊形PMAN的面積y與PM的長x之間的函數(shù)關(guān)系式以及相應(yīng)的自變量x的取值范圍;若不發(fā)生變化,求出此定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,∠ABC=2∠C,BD平分∠ABC,且,,求AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

理解與應(yīng)用
小明在學(xué)習(xí)相似三角形時,在北京市義務(wù)教育課程改革實驗教材第17冊書,第37頁遇到這樣一道題:

如圖1,在△ABC中,P是邊AB上的一點,聯(lián)結(jié)CP.
要使△ACP∽△ABC,還需要補充的一個條件是____________,或_________.
請回答:
(1)小明補充的條件是____________________,或_________________.
(2)請你參考上面的圖形和結(jié)論,探究、解答下面的問題:
如圖2,在△ABC中,∠A=60°,AC2= AB2+AB.BC.求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,∠B= 90°,點P從A點開始沿AB邊向點B以1厘米/秒的速度移動,點Q從B點開始沿BC邊向點C以2厘米/秒的速度移動。

(1)如果P、Q分別從A、B兩點同時出發(fā),經(jīng)過幾秒鐘,△PBQ的面積等于8厘米2
(2)如果P、Q兩分別從A、B兩點同時出發(fā),并且P到B又繼續(xù)在BC邊上前進(jìn),Q到C后又繼續(xù)在CA邊上前進(jìn),經(jīng)過幾秒鐘,△PCQ的面積等于12﹒6厘米2 ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知∠AOB=90°,OM是∠AOB的平分線,按以下要求解答問題:
(1)如圖1,將三角板的直角頂點P在射線OM上移動,兩直角邊分別與OA,OB交于點C,D.

①比較大。篜C______PD. (選擇“>”或“<”或“=”填空);
②證明①中的結(jié)論.
(2)將三角板的直角頂點P在射線OM上移動,一直角邊與邊OA交于點C,且OC=1,另一直角邊與直線OB,直線OA分別交于點D,E,當(dāng)以P,C,E為頂點的三角形與△OCD相似時,試求的長.(提示:請先在備用圖中畫出相應(yīng)的圖形,再求的長).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知△ABD和△CBD關(guān)于直線BD對稱(點A的對稱點是點C),點E、F分別是線段BC和線段BD上的點,且點F在線段EC的垂直平分線上,聯(lián)結(jié)AF、AE,交BD于點G.
(1)如圖(1),求證:∠EAF=∠ABD;

圖(1)
(2)如圖(2),當(dāng)AB=AD時,M是線段AG上一點,聯(lián)結(jié)BM、ED、MF,MF的延長線交ED于點N,∠MBF=∠BAF,AF=AD,試探究線段FM和FN之間的數(shù)量關(guān)系,并證明你的結(jié)論.

圖(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直角△ABC中,∠C=90°,AB=2,sinB=,點P為邊BC上一動點,PD∥AB,PD交AC于點D,連結(jié)AP.

(1)求、的長;
(2)設(shè)的長為,的面積為.當(dāng)為何值時,最大并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案