【題目】如圖,已知RtABC的直角邊ACRtDEF的直角邊DF在同一條直線上,且AC=60cm,BC=45cmDF=6cm,EF=8cm.現(xiàn)將點C與點F重合,再以4cm/s的速度沿

CA方向移動△DEF;同時,點P從點A出發(fā),以5cm/s的速度沿AB方向移動.設(shè)移動時間為ts),以點P為圓心,3tcm)長為半徑的⊙P與直線AB相交于點M,N,當點F與點A重合時,△DEF與點P同時停止移動,在移動過程中:

1)連接ME,當MEAC時,t=________s;

2)連接NF,當NF平分DE時,求t的值;

3)是否存在⊙PRtDEF的兩條直角邊所在的直線同時相切的時刻?若存在,求出t的值;若不存在,說明理由.

【答案】

【解析】試題分析:1)作,垂足為,作 垂足為.首先可求得的正弦和余弦值,在中可求得的長,然后再求得的長,接下來,再求得的長,最后依據(jù)列方程求解即可;
2)連結(jié)NFDE與點G,則GDE的中點.先證明從而可證明 然后再證明是直角三角形,然后利用銳角三角函數(shù)的定義可求得AF的長,然后依據(jù)列方程求解即可;
3)如圖3所示:過點P,垂足為H,當EF相切時,且點為G,連結(jié)PG.先證明,然后可得到 然后依據(jù)列方程求解即可;如圖4所示:連接GP,過點P 垂足為H.先證明,然后可得到 然后依據(jù)列方程求解即可.

試題解析:(1)如圖1所示:作MHAC,垂足為H,作OGAC,垂足為G.

∵在RtABC中,AC=60,BC=45,

AB=75cm.

AM=5t3t=2t.

MEAC,MH=EF, 解得

故答案為:

(2)如圖2所示:連結(jié)NFDE與點G,則GDE的中點,

AC=60cmBC=45cm,DF=6cm,EF=8cm,

∴△EDF∽△ABC.

∴∠A=E.

EDE的中點,

∴∠DFD=GDF.

又∵FC=4t,

10t+4t=60,解得

(3)如圖3所示:過點PPHAC,垂足為H,當⊙PEF相切時,且點為G,連結(jié)PG.

EF是⊙P的切線,

∴四邊形PGFH為矩形,

PG=HF.

∵⊙P的半徑為3t,

PH=3t.

∴⊙PAC相切,

EF為⊙P的切線,

PGEF.

HF=PG=3t.

AH=45AP=4tFC=4t,

4t+3t+4t=60,解得

如圖4所示:連接GP,過點PPHAC,垂足為H.

由題意得可知:AH=4t,CF=4t.

EF是⊙P的切線,

∴四邊形PGFH為矩形,

PG=HF.

GP=FH,

FH=3t.

4t+4t3t=60,解得:t=12.

綜上所述,t的值為12時,⊙PRtDEF的兩條直角邊所在的直線同時相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)ykx+b的圖象交x軸于點A(﹣2,0),交y軸于點B,與兩坐標軸所圍成的三角形的面積為8,則該函數(shù)的表達式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是ABC的邊AB上一點,O與邊AC相切于點E,與邊BC,AB分別相交于點D,F(xiàn),且DE=EF.

(1)求證:∠C=90°;

(2)當BC=3,sinA=時,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在方格紙中

(1)請在方格紙上建立平面直角坐標系,使A(2,3),C(6,2),并求出B點坐標;

(2)以原點O為位似中心,相似比為2,在第一象限內(nèi)將ABC放大,畫出放大后的圖形ABC;

(3)計算ABC的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在,中,,,,,三點在同一條直線上,連結(jié).

(1)求證:;

(2),有何位置關(guān)系?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,表示三個居民小區(qū),為豐富居民們的文化生活,現(xiàn)準備建一個文化廣場,使它到三個小區(qū)的距離相等,則文化廣場應(yīng)建在(  )

A.,兩邊高線的交點處B.,兩邊中線的交點處

C.兩邊垂直平分線的交點處D.,兩內(nèi)角平分線的交點處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A2,1),B(-1,n兩點.

(1)求反比例函數(shù)的解析式;

(2)求一次例函數(shù)的解析式;

(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解九年級學(xué)生體育測試成績情況,以九年級(1)班學(xué)生的體育測試成績?yōu)闃颖,按B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分~74分;D級:60分以下)

(1)求出D級學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比;

(2)求出扇形統(tǒng)計圖(圖2)中C級所在的扇形圓心角的度數(shù);

(3)若該校九年級學(xué)生共有500人,請你估計這次考試中A級和B級的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標系中有一格點三角形,該三角形的三個頂點為:A(1,1),B(﹣3,1),C(﹣3,﹣1).

(1)若△ABC的外接圓的圓心為P,則點P的坐標為_____,P的半徑為_____;

(2)如圖所示,在11×8的網(wǎng)格圖內(nèi),以坐標原點O點為位似中心,將△ABC按相似比2:1放大,A、B、C的對應(yīng)點分別為A'、B'、C'.①畫出△A'B'C';②將△A'B'C'沿x軸方向平移,需平移_____個單位長度,能使得B'C'所在的直線與⊙P相切.

查看答案和解析>>

同步練習(xí)冊答案