如圖,△ABC的三邊長分別是AB=14,BC=16,AC=26,P為∠A的平分線AD上一點(diǎn),且BP⊥AD,M為BC的中點(diǎn),求PM的長.
分析:延長BP交AC于點(diǎn)E,首先證明△APB≌△APE,可得AB=AE=14,PE=PB,進(jìn)而得到EC=12,再根據(jù)三角形中位線定理可以計(jì)算出PM=
1
2
EC=6.
解答:解:延長BP交AC于點(diǎn)E,
∵AD為∠BAC的平分線,
∴∠BAP=∠EAP,
∵BP⊥AD于D,
∴∠APB=∠APE=90°,
在△APB和△APE中,
∠BAP=∠EAP
AP=AP
∠APB=∠APE=90°   
,
∴△APB≌△APE(ASA),
∴AB=AE=14,
∵AC=26,
∴EC=26-14=12,
∵△APB≌△APE,
∴BP=EP,
∵M(jìn)是BC的中點(diǎn),
∴PM=
1
2
EC=
1
2
×12=6.
點(diǎn)評:此題主要考查了全等三角形的判定與性質(zhì),以及三角形中位線定理,關(guān)鍵是證明出△APB≌△APE,得到AB=AE=14,PE=PB.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC的三邊分別切⊙O于D,E,F(xiàn),若∠A=40°,則∠DEF=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•邢臺一模)(1)如圖,RT△ABC的三邊長分別為3、4、5,求△ABC內(nèi)切圓的半徑;
(2)如圖,△ABC的三邊長分別為a、b、c,面積為S,其內(nèi)切圓的半徑為r,試用a、b、c和S表示r;
(3)如圖,四邊形ABCD的周長為l,面積為S,其內(nèi)切圓的半徑為r,試用l、s表示r;
(4)若一個(gè)n變形的周長為l,面積為S,其內(nèi)切圓的半徑為r,直接寫出r、l和S的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC的三邊AB、BC、AC的長分別為4,6,8,其三條角平分線將△ABC分成三個(gè)三角形,則S△OAB:S△OBC:S△OAC=
2:3:4
2:3:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC的三邊長分別為AC=12,AB=15,BC=9.若將△ABC沿線段AD折疊,點(diǎn)C正好落在AB邊上的點(diǎn)E處.求線段CD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC的三邊長分別是6cm、8cm、10cm,現(xiàn)在分別取三邊的中點(diǎn)E、F、G,順次連接E、F、G,則△EFG的面積為
6 cm2
6 cm2

查看答案和解析>>

同步練習(xí)冊答案