如圖,△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB,E為垂足,交BC于點D,BD=數(shù)學公式,則AC的長為


  1. A.
    數(shù)學公式
  2. B.
    8
  3. C.
    16
  4. D.
    數(shù)學公式
C
分析:根據(jù)線段垂直平分線上任意一點,到線段兩端點的距離相等可得:AD=BD=16,∠B=∠BAD=22.5°,∠ADC=∠B+∠BAD=45°,在Rt△ACD中,由“勾股定理”可求出AC的長.
解答:∵DE垂直平分AB,
∴AD=BD=16,∠B=∠BAD=22.5°,
∴∠ADC=∠B+∠BAD=45°,
在Rt△ACD中,
2AC2=AD2,AC=16.
故選C.
點評:本題主要考查線段垂直平分線的性質(zhì)(垂直平分線上任意一點,到線段兩端點的距離相等)和勾股定理.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習冊答案