【題目】如圖,圓的內(nèi)接五邊形ABCDE中,ADBE交于點N,ABEC的延長線交于點M,CDBE,BCAD,BMBC1,點D的中點.

1)求證:BCDE;

2)求證:AE是圓的直徑;

3)求圓的面積.

【答案】1)證明見解析;(2)證明見解析;(3

【解析】

1)根據(jù)平行線得出∠DCE=∠CEB,求出即可;

2)求出ABBCBM,得出△ACB和△BCM是等腰三角形,求出∠ACE90°即可;

3)根據(jù)求出∠BEA=∠DAE22.5°,∠BAN45°,求出BN1,,根據(jù)勾股定理求出AE2的值,即可求出答案.

1)證明:∵CDBE,

∴∠DCE=∠CEB,

,

DEBC;

2)證明:連接AC,

BCAD

∴∠CAD=∠BCA,

,

ABDC,

∵點D的中點,

,

CDDE,

ABBC

又∵BMBC,

ABBCBM,即△ACB和△BCM是等腰三角形,

在△ACM中,,

∴∠ACE90°

AE是圓的直徑;

3)解:由(1)(2)得:,

又∵AE是圓的直徑,

∴∠BEA=∠DAE22.5°,∠BAN45°,

NANE,

∴∠BNA=∠BAN45°,∠ABN90°,

ABBN,

ABBM1,

BN1,

由勾股定理得:AE2AB2+BE2

∴圓的面積

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,.點在邊的延長線上,且.在上方作射線,使.點從點出發(fā),以每秒1個單位長度的速度,沿射線方向運動.過點,垂足為,過點,垂足為,交線段或線段于點,當點與點重合時,點停止運動.設點的運動時間為秒.

1)線段的長為______.(用含的代數(shù)式表示)

2)當點與點重合時,求的值.

3)設的面積為,求之間的函數(shù)關系式.

4)當點的某一條邊的中垂線上時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了改善教室空氣環(huán)境,某校九年級1班班委會計劃到朝陽花卉基地購買綠植.已知該基地一盆綠蘿與一盆吊蘭的價格之和是12元.班委會決定用60元購買綠蘿,用90元購買吊蘭,所購綠蘿數(shù)量正好是吊蘭數(shù)量的兩倍.

(1)分別求出每盆綠蘿和每盆吊蘭的價格;

(2)該校九年級所有班級準備一起到該基地購買綠蘿和吊蘭共計90盆,其中綠蘿數(shù)量不超過吊蘭數(shù)量的一半,該基地特地對吊蘭價格給出了如下的優(yōu)惠政策,一次性購買的吊蘭超過20盆時,超過部分的吊蘭每盆的價格打8折,根據(jù)該基地的優(yōu)惠信息,九年級購買這兩種綠植各多少盆時總費用最少?最少費用是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某人在山坡坡腳處測得一座建筑物頂點的仰角為,沿山坡向上走到處再測得該建筑物頂點的仰角為.已知米,,的延長線交于點,山坡坡度為(即).注:取

1)求該建筑物的高度(即的長).

2)求此人所在位置點的鉛直高度(測傾器的高度忽略不計).

3)若某一時刻,米長木棒豎放時,在太陽光線下的水平影長是米,則同一時刻該座建筑物頂點投影與山坡上點重合,求點到該座建筑物的水平距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為半圓的直徑,點D在半圓弧上,過點DAB的平行線與過點A半圓的切線交于點C,點EAB上,若DE垂直平分BC,則______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校積極開展“陽光體育”活動,并開設了跳繩、足球、籃球、跑步四種運動項目,為了解學生最喜愛哪一種項目,隨機抽取了部分學生進行調(diào)查,并繪制了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).

1)求本次被調(diào)查的學生人數(shù);

2)補全條形統(tǒng)計圖;

3)該校共有3000名學生,請估計全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下面的兩位數(shù)18, 2736, 4554,63,7281,99都是9的整數(shù)倍,小明發(fā)現(xiàn)這些數(shù)的個位數(shù)字與十位數(shù)字的和也都是9的整數(shù)倍,例如18的的個位數(shù)字8與十位數(shù)字1的和是9.于是小明有了這樣的結論:個位數(shù)字與十位數(shù)字的和是9的倍數(shù)的兩位數(shù)一定是9的倍數(shù).小明經(jīng)過思考后給出了如下的證明:

設十位上的數(shù)字為,個位上的數(shù)字為,并且為正整數(shù))

那么這個兩位數(shù)可表示為

∴這個兩位數(shù)是9的倍數(shù)

小明猜想:個位數(shù)字與十位數(shù)字與百位數(shù)字的和是9的倍數(shù)的三位數(shù)也一定是9的倍數(shù).小明的這個猜想的結論是否正確?若正確模仿小明的證明思路給出證明,若不正確舉出反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某旅行社推出一條成本價為500元/人的省內(nèi)旅游線路.游客人數(shù)(人/月)與旅游報價(元/人)之間的關系為,已知:旅游主管部門規(guī)定該旅游線路報價在800元/人~1200元/人之間.

(1)要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),求該旅游線路報價的取值范圍;

(2)求經(jīng)營這條旅游線路每月所需要的最低成本;

(3)當這條旅游線路的旅游報價為多少時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)如今,“垃圾分類”意識已深入人心,垃圾一般可分為:可回收物、廚余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了兩袋垃圾.

1)直接寫出甲所拿的垃圾恰好是“廚余垃圾”的概率;

2)求乙所拿的兩袋垃圾不同類的概率.

查看答案和解析>>

同步練習冊答案