(滿(mǎn)分l2分)已知:如圖在平面直角坐標(biāo)系x回中,直線(xiàn)AB分別與x軸、y軸交于點(diǎn)B,A,與反比例函數(shù)y = (K≠0)的圖象分別交于點(diǎn)C,D,CE⊥x軸于點(diǎn)E,tan∠ABO=,OB=4,OE=2.

(1)求該反比例函數(shù)的解析式;
(2)求直線(xiàn)AB的解析式.
解:(1) ∵OB=4,OE=2,∴BE=2+4=6.   
∵CE⊥x軸于點(diǎn)E.
∴tan∠CBE==,∴CE=3.                         ……2分
∴點(diǎn)C的坐標(biāo)為C(-2,3).                             ……3分
設(shè)反比例函數(shù)的解析式為y=(m≠0).
將點(diǎn)C的坐標(biāo)代入,得3=,                          ……4分
∴m=-6.                                               ……5分
∴該反比例函數(shù)的解析式為y=-.                       ……6分
(2) ∵OB=4,∴B(4,O).                                    ……7分
∴tan∠ABO==.∴OA=2,∴A(0,2).                    ……8分
設(shè)直線(xiàn)AB的解析式為y=kx+b(k≠0).
                                  b=2
將點(diǎn)A,B的坐標(biāo)分別代入,得                                 ……9分
4k+b=0
              k=-
解得                                                        ……11分
b=2.
∴直線(xiàn)AB的解析式為y=-x+2.                              ……12分解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011廣西崇左,25,14分)(本小題滿(mǎn)分14分)已知拋物線(xiàn)y=x2+4x+mm為常數(shù))

經(jīng)過(guò)點(diǎn)(0,4).

(1)       求m的值;

(2)       將該拋物線(xiàn)先向右、再向下平移得到另一條拋物線(xiàn).已知平移后的拋物線(xiàn)滿(mǎn)足下述兩個(gè)條件:它的對(duì)稱(chēng)軸(設(shè)為直線(xiàn)l2)與平移前的拋物線(xiàn)的對(duì)稱(chēng)軸(設(shè)為直線(xiàn)l1)關(guān)于y軸對(duì)稱(chēng);它所對(duì)應(yīng)的函數(shù)的最小值為-8.

① 試求平移后的拋物線(xiàn)的解析式;

② 試問(wèn)在平移后的拋物線(xiàn)上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線(xiàn)l2相交?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),并求出直線(xiàn)l2被圓P所截得的弦AB的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011廣西崇左,25,14分)(本小題滿(mǎn)分14分)已知拋物線(xiàn)y=x2+4x+mm為常數(shù))
經(jīng)過(guò)點(diǎn)(0,4).
(1)      求m的值;
(2)      將該拋物線(xiàn)先向右、再向下平移得到另一條拋物線(xiàn).已知平移后的拋物線(xiàn)滿(mǎn)足下述兩個(gè)條件:它的對(duì)稱(chēng)軸(設(shè)為直線(xiàn)l2)與平移前的拋物線(xiàn)的對(duì)稱(chēng)軸(設(shè)為直線(xiàn)l1)關(guān)于y軸對(duì)稱(chēng);它所對(duì)應(yīng)的函數(shù)的最小值為-8.
① 試求平移后的拋物線(xiàn)的解析式;
② 試問(wèn)在平移后的拋物線(xiàn)上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線(xiàn)l2相交?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),并求出直線(xiàn)l2被圓P所截得的弦AB的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(內(nèi)蒙古赤峰卷)數(shù)學(xué) 題型:解答題

(2011廣西崇左,25,14分)(本小題滿(mǎn)分14分)已知拋物線(xiàn)y=x2+4x+mm為常數(shù))
經(jīng)過(guò)點(diǎn)(0,4).
(1)      求m的值;
(2)      將該拋物線(xiàn)先向右、再向下平移得到另一條拋物線(xiàn).已知平移后的拋物線(xiàn)滿(mǎn)足下述兩個(gè)條件:它的對(duì)稱(chēng)軸(設(shè)為直線(xiàn)l2)與平移前的拋物線(xiàn)的對(duì)稱(chēng)軸(設(shè)為直線(xiàn)l1)關(guān)于y軸對(duì)稱(chēng);它所對(duì)應(yīng)的函數(shù)的最小值為-8.
① 試求平移后的拋物線(xiàn)的解析式;
② 試問(wèn)在平移后的拋物線(xiàn)上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線(xiàn)l2相交?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),并求出直線(xiàn)l2被圓P所截得的弦AB的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(內(nèi)蒙古赤峰卷)數(shù)學(xué) 題型:解答題

(2011廣西崇左,25,14分)(本小題滿(mǎn)分14分)已知拋物線(xiàn)y=x2+4x+mm為常數(shù))

經(jīng)過(guò)點(diǎn)(0,4).

(1)       求m的值;

(2)       將該拋物線(xiàn)先向右、再向下平移得到另一條拋物線(xiàn).已知平移后的拋物線(xiàn)滿(mǎn)足下述兩個(gè)條件:它的對(duì)稱(chēng)軸(設(shè)為直線(xiàn)l2)與平移前的拋物線(xiàn)的對(duì)稱(chēng)軸(設(shè)為直線(xiàn)l1)關(guān)于y軸對(duì)稱(chēng);它所對(duì)應(yīng)的函數(shù)的最小值為-8.

①  試求平移后的拋物線(xiàn)的解析式;

②  試問(wèn)在平移后的拋物線(xiàn)上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線(xiàn)l2相交?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),并求出直線(xiàn)l2被圓P所截得的弦AB的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(內(nèi)蒙古烏蘭察布卷)數(shù)學(xué) 題型:解答題

(2011廣西崇左,25,14分)(本小題滿(mǎn)分14分)已知拋物線(xiàn)y=x2+4x+mm為常數(shù))

經(jīng)過(guò)點(diǎn)(0,4).

(1)       求m的值;

(2)       將該拋物線(xiàn)先向右、再向下平移得到另一條拋物線(xiàn).已知平移后的拋物線(xiàn)滿(mǎn)足下述兩個(gè)條件:它的對(duì)稱(chēng)軸(設(shè)為直線(xiàn)l2)與平移前的拋物線(xiàn)的對(duì)稱(chēng)軸(設(shè)為直線(xiàn)l1)關(guān)于y軸對(duì)稱(chēng);它所對(duì)應(yīng)的函數(shù)的最小值為-8.

①  試求平移后的拋物線(xiàn)的解析式;

②  試問(wèn)在平移后的拋物線(xiàn)上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線(xiàn)l2相交?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),并求出直線(xiàn)l2被圓P所截得的弦AB的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案