【題目】如圖,平面直角坐標(biāo)系中,□OABC的頂點(diǎn)A坐標(biāo)為(6,0),C點(diǎn)坐標(biāo)為(2,2),若經(jīng)過點(diǎn)P(1,0)的直線平分□OABC的周長,則該直線的解析式為_______________.
【答案】
【解析】
在BC上截取一點(diǎn)D,使得BD=OP=1,則直線PD平分□OABC的周長,由BC=OA=6,可以得到CD=5,然后得到D點(diǎn)坐標(biāo)為:(7,2),結(jié)合點(diǎn)P,利用待定系數(shù)法,即可求出直線PD的解析式.
解:如圖,在BC上截取一點(diǎn)D,使得BD=OP,
∵OA+AB=BC+OC,BD=OP,
∴PA+AB+BD=CD+OC+OP,
∴直線PD平分平行四邊形OABC的周長,
∵點(diǎn)P為(1,0),A為(6,0),C(2,2),
∴OP=BD=1,CD=AP=5,
∴點(diǎn)D坐標(biāo)為:(7,2),
設(shè)直線PD為:,
把點(diǎn)P(1,0)和點(diǎn)D(7,2)代入,得
,解得:,
∴直線PD為:;
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在Rt△ABC中,∠C=90°,BD平分∠ABC,過D作DE⊥BD交AB于點(diǎn)E,經(jīng)過B,D,E三點(diǎn)作⊙O.
(1)求證:AC與⊙O相切于D點(diǎn);
(2)若AD=15,AE=9,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,正方形ABCD的邊長為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=x2﹣mx+m+1(m為常數(shù)).若這個(gè)二次函數(shù)的圖象與x軸只有一個(gè)公共點(diǎn)A,且A點(diǎn)在x軸的正半軸上.
(1)求m的值.
(2)四邊形AOBC是正方形,且點(diǎn)B在y軸的負(fù)半軸上,現(xiàn)將這個(gè)二次函數(shù)的圖象平移,使平移后的函數(shù)圖象恰好經(jīng)過B,C兩點(diǎn),求平移后的圖象對應(yīng)的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABM=90°,⊙O分別切AB、BM于點(diǎn)D、E.AC切⊙O于點(diǎn)F,交BM于點(diǎn)C(C與B不重合).
(1)用直尺和圓規(guī)作出AC(保留作圖痕跡,不寫作法);
(2)若⊙O半徑為1,AD=4,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(1,0)和點(diǎn)B (0,-3),與x軸交于另一點(diǎn)C。
(1)求拋物線的解析式。
(2)在拋物線上是否存在一點(diǎn)D,使△ACD的面積與△ABC的面積相等(點(diǎn)D不與點(diǎn)B重合)?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由。
(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是拋物線對稱軸上的動(dòng)點(diǎn),那么是否存在這樣的點(diǎn)P,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在邊AB上,點(diǎn)F、E在邊AC上,且DF∥BE,.
(1)求證:DE∥BC;
(2)如果,S△ADF=2,求S△ABC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面內(nèi)的兩條直線l1、l2,點(diǎn)A、B在直線l2上,過點(diǎn)A、B兩點(diǎn)分別作直線l1的垂線,垂足分別為A1、B1,我們把線段A1B1叫做線段AB在直線l2上的正投影,其長度可記作T(AB,CD)或T(AB,l2),特別地,線段AC在直線l2上的正投影就是線段A1C,請依據(jù)上述定義解決如下問題.
(1)如圖1,在銳角△ABC中,AB=5,T(AC,AB)=3,則T(BC,AB)= ;
(2)如圖2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面積;
(3)如圖3,在鈍角△ABC中,∠A=60°,點(diǎn)D在AB邊上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,AB為直徑,點(diǎn)C為圓上一點(diǎn),將劣弧沿弦AC翻折交AB于點(diǎn)D,連結(jié)CD.如圖,若點(diǎn)D與圓心O不重合,∠BAC=25°,則∠DCA的度數(shù)( 。
A.35°B.40°C.45°D.65°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com