精英家教網 > 初中數學 > 題目詳情

已知,拋物線y=ax2+bx+c的部分圖象如圖,則下列說法:①對稱軸是直線x=1;②當-1<x<3時,y<0;③a+b+c=-4;④方程ax2+bx+c+5=0無實數根,其中正確的有________.

①②③④
分析:觀察函數圖象易得拋物線的對稱軸為直線x=1,拋物線與x軸的一個交點坐標為(-1,0),當x=1時,y有最小值-4,然后利用對稱性可得到拋物線與x軸的另一交點坐標為(3,0),觀察圖象得到當-1<x<3時,對應的拋物線在x軸下方,即y<0;把x=1代入解析式即可得到a+b+c=-4;由于ax2+bx+c的最小值為-4,則ax2+bx+c≠-5,得到方程ax2+bx+c+5=0無實數根.
解答:觀察圖象可得拋物線的對稱軸為直線x=1,所以①正確;
點(-1,0)關于直線x=1的對稱點的坐標為(3,0),即拋物線與x軸的交點坐標為(-1,0)和(3,0),則當-1<x<3時,y<0,所以②正確;
當x=1時,y有最小值-4,則a+b+c=-4,所以③正確;
ax2+bx+c的最小值為-4,則ax2+bx+c不可能等于-5,即方程ax2+bx+c+5=0無實數根,所以④正確.
故答案為①②③④.
點評:本題考查了二次函數y=ax2+bx+c的圖象與系數的關系:當a>0,拋物線開口向上,函數有最小值;拋物線的對稱軸為直線x=-,頂點坐標為(-,).
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:拋物線y=x2-(a+b)x+
c2
4
,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為
3
,拋物線與x軸交于點P、Q,問是否精英家教網存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:拋物線y=ax2+bx+c(a≠0)的圖象經過點(1,0),一條直線y=ax+b,它們的系數之間滿足如下關系:a>b>c.
(1)求證:拋物線與直線一定有兩個不同的交點;
(2)設拋物線與直線的兩個交點為A、B,過A、B分別作x軸的垂線,垂足分別為A1、B1.令k=
c
a
,試問:是否存在實數k,使線段A1B1的長為4
2
.如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•貴陽)已知:直線y=ax+b過拋物線y=-x2-2x+3的頂點P,如圖所示.
(1)頂點P的坐標是
(-1,4)
(-1,4)

(2)若直線y=ax+b經過另一點A(0,11),求出該直線的表達式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關于x軸成軸對稱,求直線y=mx+n與拋物線y=-x2-2x+3的交點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:拋物線數學公式,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為數學公式,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年四川省綿陽市南山中學自主招生考試數學試卷(解析版) 題型:解答題

已知:拋物線,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案