12.如圖,已知拋物線y=-x2-2x+3與坐標(biāo)軸分別交于A,B,C三點(diǎn),在拋物線上找到一點(diǎn)D,使得∠DCB=∠ACO,則D點(diǎn)坐標(biāo)為(-$\frac{5}{2}$,$\frac{7}{4}$)或(-4,-5).

分析 求出點(diǎn)A、B、C的坐標(biāo),當(dāng)D在x軸下方時,設(shè)直線CD與x軸交于點(diǎn)E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,從而可求出E的坐標(biāo),再求出CE的直線解析式,聯(lián)立拋物線即可求出D的坐標(biāo),再由對稱性即可求出D在x軸上方時的坐標(biāo).

解答 解:令y=0代入y=-x2-2x+3,
∴x=-3或x=1,
∴OA=1,OB=3,
令x=0代入y=-x2-2x+3,
∴y=3,
∴OC=3,
當(dāng)點(diǎn)D在x軸下方時,
∴設(shè)直線CD與x軸交于點(diǎn)E,過點(diǎn)E作EG⊥CB于點(diǎn)G,
∵OB=OC,
∴∠CBO=45°,
∴BG=EG,OB=OC=3,
∴由勾股定理可知:BC=3$\sqrt{2}$,
設(shè)EG=x,
∴CG=3$\sqrt{2}$-x,
∵∠DCB=∠ACO.
∴tan∠DCB=tan∠ACO=$\frac{OA}{OC}$=$\frac{1}{3}$,
∴$\frac{EG}{CG}=\frac{1}{3}$,
∴x=$\frac{3\sqrt{2}}{4}$,
∴BE=$\sqrt{2}$x=$\frac{3}{2}$,
∴OE=OB-BE=$\frac{3}{2}$,
∴E(-$\frac{3}{2}$,0),
設(shè)CE的解析式為y=mx+n,交拋物線于點(diǎn)D2
把C(0,3)和E(-$\frac{3}{2}$,0)代入y=mx+n,
∴$\left\{\begin{array}{l}{3=n}\\{0=-\frac{3}{2}m+n}\end{array}\right.$
解得:$\left\{\begin{array}{l}{m=2}\\{n=3}\end{array}\right.$
∴直線CE的解析式為:y=2x+3,
聯(lián)立$\left\{\begin{array}{l}{y=2x+3}\\{y=-{x}^{2}-2x+3}\end{array}\right.$
解得:x=-4或x=0,
∴D2的坐標(biāo)為(-4,-5)
設(shè)點(diǎn)E關(guān)于BC的對稱點(diǎn)為F,
連接FB,
∴∠FBC=45°,
∴FB⊥OB,
∴FB=BE=$\frac{3}{2}$,
∴F(-3,$\frac{3}{2}$)
設(shè)CF的解析式為y=ax+b,
把C(0,3)和(-3,$\frac{3}{2}$)代入y=ax+b
$\left\{\begin{array}{l}{3=b}\\{\frac{3}{2}=-3a+b}\end{array}\right.$
解得:$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=3}\end{array}\right.$,
∴直線CF的解析式為:y=$\frac{1}{2}$x+3,
聯(lián)立$\left\{\begin{array}{l}{y=\frac{1}{2}x+3}\\{y=-{x}^{2}-2x+3}\end{array}\right.$
解得:x=0或x=-$\frac{5}{2}$
∴D1的坐標(biāo)為(-$\frac{5}{2}$,$\frac{7}{4}$)
故答案為:(-$\frac{5}{2}$,$\frac{7}{4}$)或(-4,-5)

點(diǎn)評 本題考查二次函數(shù)的綜合問題,解題的關(guān)鍵是根據(jù)對稱性求出相關(guān)點(diǎn)的坐標(biāo),利用直線解析式以及拋物線的解析式即可求出點(diǎn)D的坐標(biāo),本題屬于中等題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.已知:若$\sqrt{10}$的整數(shù)部分為a,小數(shù)部分為b,則2a-(b+3)2=-4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,有一拋物線型的立交橋橋拱,這個橋拱的最大高度為16米,跨度為40米,若要在跨度中心點(diǎn)M的左,右5米處各垂直豎立一根鐵柱支撐拱頂,則鐵柱應(yīng)取多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.計算:
(1)y3•y2•y        
(2)(x34•x2
(3)( a4•a23•(-a)5
(4)(-3a23-a•a5+(4a32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如果a、b、c是非零有理數(shù),且a+b+c=0,那么$\frac{a}{|a|}$+$\frac{|b|}$+$\frac{c}{|c|}$+$\frac{abc}{|abc|}$的所有可能的值為0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.如圖,有一矩形紙片OABC放在直角坐標(biāo)系中,O為原點(diǎn),C在x軸上,OA=6,OC=10,如圖,在OA上取一點(diǎn)E,將△EOC沿EC折疊,使O點(diǎn)落在AB邊上的D點(diǎn)處,則點(diǎn)E的坐標(biāo)為(0,$\frac{10}{3}$).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.|3.14-π|+$\sqrt{{(3.14-π)}^{2}}$=2π-6.28.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.下列是二元一次方程的是( 。
A.3x-5y=1B.$\frac{1}{x}$=3y+1C.xy+2x-y=0D.2x2-y=9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=$\frac{a}{x}$的圖象在第一象限交于點(diǎn)A(8,6),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求函數(shù)y=kx+b和y=$\frac{a}{x}$的表達(dá)式;
(2)已知點(diǎn)C(0,10),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案