(2007•開封)25÷23= .
【答案】分析:根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相減計算即可.
解答:解:25÷23=22=4.
故填4.
點評:本題考查了同底數(shù)冪的除法,運用法則的關鍵是看底數(shù)是否相同,而指數(shù)相減是被除式的指數(shù)減去除式的指數(shù).
練習冊系列答案
相關習題
科目:初中數(shù)學
來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版)
題型:解答題
(2007•開封)已知拋物線y=x2-2x+m與x軸交于點A(x1,0)、B(x2,0)(x2>x1),
(1)若點P(-1,2)在拋物線y=x2-2x+m上,求m的值;
(2)若拋物線y=ax2+bx+m與拋物線y=x2-2x+m關于y軸對稱,點Q1(-2,q1)、Q2(-3,q2)都在拋物線y=ax2+bx+m上,則q1、q2的大小關系是______;
(請將結論寫在橫線上,不要寫解答過程);(友情提示:結論要填在答題卡相應的位置上)
(3)設拋物線y=x2-2x+m的頂點為M,若△AMB是直角三角形,求m的值.
查看答案和解析>>
科目:初中數(shù)學
來源:2009年河北省廊坊市安次區(qū)九年級網(wǎng)絡試卷設計大賽數(shù)學試卷(1)(解析版)
題型:解答題
(2007•開封)已知拋物線y=x2-2x+m與x軸交于點A(x1,0)、B(x2,0)(x2>x1),
(1)若點P(-1,2)在拋物線y=x2-2x+m上,求m的值;
(2)若拋物線y=ax2+bx+m與拋物線y=x2-2x+m關于y軸對稱,點Q1(-2,q1)、Q2(-3,q2)都在拋物線y=ax2+bx+m上,則q1、q2的大小關系是______;
(請將結論寫在橫線上,不要寫解答過程);(友情提示:結論要填在答題卡相應的位置上)
(3)設拋物線y=x2-2x+m的頂點為M,若△AMB是直角三角形,求m的值.
查看答案和解析>>
科目:初中數(shù)學
來源:2007年河南省開封市中考數(shù)學試卷(解析版)
題型:解答題
(2007•開封)已知拋物線y=x2-2x+m與x軸交于點A(x1,0)、B(x2,0)(x2>x1),
(1)若點P(-1,2)在拋物線y=x2-2x+m上,求m的值;
(2)若拋物線y=ax2+bx+m與拋物線y=x2-2x+m關于y軸對稱,點Q1(-2,q1)、Q2(-3,q2)都在拋物線y=ax2+bx+m上,則q1、q2的大小關系是______;
(請將結論寫在橫線上,不要寫解答過程);(友情提示:結論要填在答題卡相應的位置上)
(3)設拋物線y=x2-2x+m的頂點為M,若△AMB是直角三角形,求m的值.
查看答案和解析>>
科目:初中數(shù)學
來源:2006年福建省廈門市中考數(shù)學試卷第3輪(解析版)
題型:解答題
(2007•開封)已知拋物線y=x2-2x+m與x軸交于點A(x1,0)、B(x2,0)(x2>x1),
(1)若點P(-1,2)在拋物線y=x2-2x+m上,求m的值;
(2)若拋物線y=ax2+bx+m與拋物線y=x2-2x+m關于y軸對稱,點Q1(-2,q1)、Q2(-3,q2)都在拋物線y=ax2+bx+m上,則q1、q2的大小關系是______;
(請將結論寫在橫線上,不要寫解答過程);(友情提示:結論要填在答題卡相應的位置上)
(3)設拋物線y=x2-2x+m的頂點為M,若△AMB是直角三角形,求m的值.
查看答案和解析>>
科目:初中數(shù)學
來源:2005年福建省廈門市中考數(shù)學試卷(課標卷)(解析版)
題型:解答題
(2007•開封)已知拋物線y=x2-2x+m與x軸交于點A(x1,0)、B(x2,0)(x2>x1),
(1)若點P(-1,2)在拋物線y=x2-2x+m上,求m的值;
(2)若拋物線y=ax2+bx+m與拋物線y=x2-2x+m關于y軸對稱,點Q1(-2,q1)、Q2(-3,q2)都在拋物線y=ax2+bx+m上,則q1、q2的大小關系是______;
(請將結論寫在橫線上,不要寫解答過程);(友情提示:結論要填在答題卡相應的位置上)
(3)設拋物線y=x2-2x+m的頂點為M,若△AMB是直角三角形,求m的值.
查看答案和解析>>