14、如圖,在直角坐標(biāo)系中有四個(gè)點(diǎn)A(-6,3),B(-2,5),C(0,m),D (n,0),當(dāng)四邊形ABCD周長(zhǎng)最短時(shí),則m=
3
,n=
-3
分析:設(shè)A點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)為A′,則A′(-6,-3),B點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)是B′(2,5),設(shè)直線A′B′解析式為y=kx+b,把A′(-6,-3),B′(2,5)代入得k=1,b=3,所以y=x+3,令x=0,得y=3,令y=0,得x=-3,即m=3,n=-3,即m+n=0.
解答:解:∵四邊形ABCD周長(zhǎng)最短,AB長(zhǎng)度一定,
∴必須使AD+CD+BC最短,即A、D、C、B′共線,
作A點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)為A′,B點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)是B′,
設(shè)直線A′B′為y=kx+b,
則A′(-6,-3),B′(2,5),
將其代入直線中得:k=1,b=3,
∴y=x+3,
∵C(0,m),D(n,0),
代入直線方程中,得:m=3,n=-3,
故答案為:3,-3.
點(diǎn)評(píng):此題考查了最短線路問題及坐標(biāo)與圖形性質(zhì);應(yīng)用線段AB長(zhǎng)度一定,當(dāng)四邊形ABCD周長(zhǎng)最短時(shí),即AD+CD+BC最短,可以利用對(duì)稱性求解是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案