如圖1,矩形紙片ABCD的邊長(zhǎng)分別為a,b(a<b),將紙片任意翻折(如圖2),折痕為PQ,(P在BC上),使頂點(diǎn)C落在四邊形APCD內(nèi)一點(diǎn)C′,PC′的延長(zhǎng)線交直線AD于M,再將紙片的另一部分翻折,使A落在直線PM上一點(diǎn)A′,且A′M所在直線與PM所在直線重合(如圖3)折痕為MN。
(1)猜想兩折痕PQ,MN之間的位置關(guān)系,并加以證明;
(2)若∠QPC的角度在每次翻折的過(guò)程中保持不變,則每次翻折后,兩折痕PQ,MN間的距離有何變化?請(qǐng)說(shuō)明理由;
(3)若∠QPC的角度在每次翻折的過(guò)程中都為45°(如圖4),每次翻折后,非重疊部分的四邊形MC′QD,及四邊形BPA′N(xiāo)的周長(zhǎng)與a,b有何關(guān)系,為什么?
解:(1)PQ∥MN
∵四邊形ABCD是矩形,
∴AD∥BC,且M在AD直線上,則有AM∥BC
∴∠AMP=∠MPC
由翻折可得:,
所以
。
(2)兩折痕PQ,MN間的距離不變
過(guò)P作PH⊥MN,則PH=PM·sin∠PMH,
∵∠QPC的角度不變,
∴∠C'PC的角度也不變,則所有的PM都是平行的
又∵AD∥BC,
∴所有的PM都是相等的
又∵∠PMH=∠QPC,故PH的長(zhǎng)不變。
(3)當(dāng)∠QPC=45°時(shí),四邊形PCQC'是正方形,四邊形C'QDM是矩形
∵C'Q=CQ,C'Q+QD=a,
∴矩形C'QDM的周長(zhǎng)為2a
同理可得矩形BPA'N的周長(zhǎng)為2a,
∴兩個(gè)四邊形的周長(zhǎng)都為2a,與b無(wú)關(guān)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,將矩形紙片ABCD沿對(duì)角線AC折疊,使點(diǎn)B落到點(diǎn)B′的位置,AB′與CD交于點(diǎn)E.
(1)試找出一個(gè)與△AED全等的三角形,并加以證明;
(2)若AB=8,DE=3,P為線段AC上的任意一點(diǎn),PG⊥AE于G,PH⊥EC于H,試求PG+PH的值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•松北區(qū)三模)如圖,將矩形紙片ABCD折痕,使點(diǎn)D落在點(diǎn)線段AB的中點(diǎn)F處.若AB=4,則邊BC的長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,把矩形紙片ABCD沿折疊,使點(diǎn)B落在邊AD上的點(diǎn)B′處,點(diǎn)A落在點(diǎn)A′處;
( I)求證:B′E=BF
( II)設(shè)AE=a,AB=b,BF=c,求證:a+b>c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,將矩形紙片ABCD沿EF折疊,點(diǎn)C與點(diǎn)A重合,點(diǎn)D落在點(diǎn)D′處,已知AB=4,BC=8,則線段AE的長(zhǎng)度是
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察與發(fā)現(xiàn):
(1)小明將三角形紙片ABC(AB>AC)沿過(guò)點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開(kāi)紙片(如圖①);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖②).你認(rèn)為△AEF是什么形狀的三角形?為什么?
精英家教網(wǎng)
實(shí)踐與運(yùn)用:
如圖,將矩形紙片ABCD按如下順序進(jìn)行折疊:對(duì)折、展平,得折痕EF(如圖①);沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B′處(如圖②);展平,得折痕GC(如圖③);沿GH折疊,使點(diǎn)C落在DH上的點(diǎn)C′處(如圖④);沿GC′折疊(如圖⑤);展平,得折痕GC′、GH(如圖⑥).
(2)在圖②中連接BB′,判斷△BCB′的形狀,請(qǐng)說(shuō)明理由;
(3)圖⑥中的△GCC′是等邊三角形嗎?請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案