【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別是(a,0),(b,0)

(1)求點(diǎn)AB的坐標(biāo);

(2)y軸上是否存在點(diǎn)C,使ABC的面積是15?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請說明理由.

(3)已知點(diǎn)Py軸負(fù)半軸上一點(diǎn),且到x軸的距離為3,若點(diǎn)P沿x軸負(fù)半軸方向以每秒2個單位長度平移至點(diǎn)Q,當(dāng)運(yùn)動時間t為多少秒時,四邊形ABPQ的面積S18個平方單位?求此時點(diǎn)Q的坐標(biāo).

【答案】1A(-4,0), B(2,0);2存在.C(0,5)C(0,-5) ;3當(dāng)運(yùn)動時間t3秒時,此時點(diǎn)Q的坐標(biāo)(-6-3)

【解析】

1)根據(jù)二次根式與絕對值的非負(fù)性可得a40,b20,解得a4,b2;

2)設(shè)點(diǎn)Cx軸的距離為,利用三角形的面積公式可解得5,要考慮點(diǎn)Cy軸正半軸與負(fù)半軸兩種情況;

3)先根據(jù)四邊形ABPQ的面積積S (6PQ)×318解得PQ6,再求得t和點(diǎn)Q的坐標(biāo).

1

a+4=0,b-2=0

解得:a=-4, b=2

A(-4,0), B(2,0)

(2) 存在.

A(-4,0), B(2,0)

AB=6

∵SABC=

=15

解得:OC=5

C(0,5)C(0,-5)

(3)如圖,點(diǎn)Py軸負(fù)半軸上一點(diǎn),且到x軸的距離為3

P(0,-3)

∵四邊形ABPQ的面積S (6PQ)×315

解得PQ=6

∵點(diǎn)P沿x軸負(fù)半軸方向以每秒2個單位長度平移至點(diǎn)Q

當(dāng)運(yùn)動時間t3秒時,四邊形ABPQ的面積S18個平方單位,此時點(diǎn)Q的坐標(biāo)(-6,-3)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F是等邊△ABC邊CA延長線上一點(diǎn),點(diǎn)D是線段BF上一點(diǎn),且BC=CD,CD交AB于點(diǎn)E,若AE=6,CE=14,則AF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點(diǎn)E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.

(1)求證:四邊形ABEF為菱形;

(2)AE,BF相交于點(diǎn)O,若BF=6,AB=5,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,O為AC中點(diǎn),點(diǎn)P在AC上,若OP= ,tan∠A= ,∠B=120°,BC=2 ,則AP=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD中,F(xiàn)是AB上一點(diǎn),H是BC延長線上一點(diǎn),連接FH,將△FBH沿FH翻折,使點(diǎn)B的對應(yīng)點(diǎn)E落在AD上,EH與CD交于點(diǎn)G,連接BG交FH于點(diǎn)M,當(dāng)GB平分∠CGE時,BM=2 ,AE=8,則S四邊形EFMG=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上一點(diǎn),且AB=14.動點(diǎn)P從點(diǎn)A出發(fā),以每秒5個單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動,設(shè)運(yùn)動時間為tt>0秒.

1寫出數(shù)軸上點(diǎn)B表示的數(shù) ,點(diǎn)P表示的數(shù) 用含t的代數(shù)式表示

2動點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動,若點(diǎn)P、Q同時出發(fā),問點(diǎn)P運(yùn)動多少秒時追上點(diǎn)Q?

3若M為AP的中點(diǎn),N為PB的中點(diǎn).點(diǎn)P在運(yùn)動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)同題情境:如圖1,ABCD,∠PAB=130°,∠PCD=120°.求∠APC的度數(shù).

小明想到一種方法,但是沒有解答完:

如圖2,過PPEAB,∴∠APE+∠PAB=180°.

∴∠APE=180°-∠PAB=180°-130°=50°.

ABCD.∴PECD.

…………

請你幫助小明完成剩余的解答.

(2)問題遷移:請你依據(jù)小明的思路,解答下面的問題

如圖3,ADBC,點(diǎn)P在射線OM上運(yùn)動,∠MDP=∠α,∠BCP=∠β.

當(dāng)點(diǎn)PAB兩點(diǎn)之間時,∠CPD,∠α,∠β之間有何數(shù)量關(guān)系?請說明理由.

②當(dāng)點(diǎn)PA、B兩點(diǎn)外側(cè)時(點(diǎn)P與點(diǎn)O不重合),請直接寫出∠CPD,∠α,∠β之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋中裝有5個黃球,13個黑球和22個紅球,它們除顏色外都相同.

(1)小明和小紅玩摸球游戲,規(guī)定每人摸球后再將摸到的球放回去為一次游戲.若摸到黑球小明獲勝,摸到黃球小紅獲勝,這個游戲?qū)﹄p方公平嗎?請說明你的理由;

(2)現(xiàn)在裁判想從袋中取出若干個黑球,并放入相同數(shù)量的黃球,使得這個游戲?qū)﹄p方公平,問取出了多少黑球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接AP,BP,CP,將△PAB繞著點(diǎn)B順時針旋轉(zhuǎn)90°到△P′CB的位置.若AP=2,BP=4,∠APB=135°,求PP′及PC的長.

查看答案和解析>>

同步練習(xí)冊答案