【題目】如圖,已知AC⊥BC,BD⊥AD,AC與BD交于O,AC=BD.

求證:
(1)BC=AD;
(2)△OAB是等腰三角形.

【答案】
(1)證明:∵AC⊥BC,BD⊥AD,

∴∠ADB=∠ACB=90°,

在Rt△ABC和Rt△BAD中,

,

∴Rt△ABC≌Rt△BAD(HL),

∴BC=AD


(2)證明:∵Rt△ABC≌Rt△BAD,

∴∠CAB=∠DBA,

∴OA=OB,

∴△OAB是等腰三角形


【解析】(1)根據(jù)AC⊥BC,BD⊥AD,得出△ABC與△BAD是直角三角形,再根據(jù)AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可證出BC=AD,(2)根據(jù)Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,從而證出OA=OB,△OAB是等腰三角形.
【考點(diǎn)精析】本題主要考查了等腰三角形的判定的相關(guān)知識(shí)點(diǎn),需要掌握如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:等角對(duì)等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y2x23的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)分別是( 。

A.2、0、﹣3B.2、﹣30C.2、30D.2、03

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知a∥b,長(zhǎng)方形ABCD的點(diǎn)A在直線a上,B,C,D三點(diǎn)在平面上移動(dòng)變化(長(zhǎng)方形形狀大小始終保持不變),請(qǐng)根據(jù)如下條件解答:

(1)圖1,若點(diǎn)B、D在直線b上,點(diǎn)C在直線b的下方,∠2=30°,則∠1=;
(2)圖2,若點(diǎn)D在直線a的上方,點(diǎn)C在平行直線a,b內(nèi),點(diǎn)B在直線b的下方,m,n表示角的度數(shù),請(qǐng)寫出m與n的數(shù)量關(guān)系并說(shuō)明理由;
(3)圖3,若點(diǎn)D在平行直線a,b內(nèi),點(diǎn)B,C在直線b的下方,x,y表示角的度數(shù)(x>y),且滿足關(guān)系式x2﹣2xy+y2=100,求x的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AB、CD交于點(diǎn)O,OE⊥AB于O,則下列不正確的是(
A.∠AOC與∠BOD是對(duì)頂角
B.∠BOD和∠DOE互為余角
C.∠AOC和∠DOE互為余角
D.∠AOE和∠BOC是對(duì)頂角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABCD,給出下列條件:AC=BD;②∠BAD=90°;AB=BC;ACBD,添加其中之一能使ABCD成為菱形的條件是(  )

A. ①③ B. ②③ C. ③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線 y=2x+1 向右平移得到 y=2x-1,平移了( )個(gè)單位長(zhǎng)度

A. -2B. -1C. 1D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AC⊥BC,BD⊥AD,AC與BD交于O,AC=BD.

求證:
(1)BC=AD;
(2)△OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOB=45°,點(diǎn)P在∠AOB內(nèi)部,P1與P關(guān)于OB對(duì)稱,P2與P關(guān)于OA對(duì)稱,則P1 , O,P2三點(diǎn)構(gòu)成的三角形是(
A.直角三角形
B.等腰三角形
C.等邊三角形
D.等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一張矩形紙條ABCD按如圖所示折疊,若折疊角∠FEC=64°.

(1)求∠1的度數(shù);
(2)求證:△EFG是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案