如圖,D、E分別為△ABC的邊AB、AC上的點(diǎn),且DE∥BC,將△ABC沿DE所在直線折疊,點(diǎn)A落在BC邊上的點(diǎn)F處,∠B=42°,則∠BDF的度數(shù)為(  )
分析:先根據(jù)圖形翻折不變性的性質(zhì)可得∠ADE=∠EDF,再由平行線的性質(zhì)可得∠B=∠ADE=42°,最后由平角的性質(zhì)即可求解.
解答:解:∵△DEF是△DEA沿直線DE翻折變換而來(lái),
∴∠ADE=∠EDF,
∵DE∥BC,∠B=42°,
∴∠B=∠ADE=42°,
∴∠ADE=∠EDF=42°,
∴∠BDF=180°-∠ADE-∠EDF=180°-42°-42°=96°.
故選A.
點(diǎn)評(píng):本題考查的是圖形翻折變換的性質(zhì)及平行線的性質(zhì),熟知折疊的性質(zhì)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,E,F(xiàn)分別為矩形ABCD的邊AD,BC的中點(diǎn),若矩形ABCD∽矩形EABF,AB=1.求矩形ABCD
的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,A、B分別為y=x2上兩點(diǎn),且線段AB⊥y軸,若AB=6,則直線AB的表達(dá)式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,D,E分別為AB的三等分點(diǎn),DF∥EG∥BC,若BC=12,則DF=
 
,EG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,D、E分別為⊙O半徑OA、OB的中點(diǎn),C是
AB
的中點(diǎn),CD與CE相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng))如圖,C、D分別為EA、EB的中點(diǎn),∠E=30°,∠1=110°,則∠2的度數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案