解答:解:(1)設(shè)過點(diǎn)A、D的直線解析式為y=kx+b,
∵點(diǎn)A(-3,0)、D(0,4)代入得
,
解得
,
∴直線AD的解析式為y=
x+4,
∴AD=
=5,
∵點(diǎn)D、E分別是AC、BC的中點(diǎn),
∴CD=AD=5,
設(shè)點(diǎn)C(x,
x+4),則
CD=
=
,
解得x
1=3或x
2=-3(舍去),
∴C(3,8),
如圖①,過點(diǎn)C作CH⊥x軸于點(diǎn)H,則直線CH的解析式為x=3,
∵AC=BC,
∴點(diǎn)D與點(diǎn)E,點(diǎn)A與點(diǎn)B關(guān)于直線CH對(duì)稱,
∵A(-3,0)、D(0,4),
∴B(9,0);E(6,4),
故答案為:B(9,0);C(3,8);E(6,4);
(2)①∵A(-3,0),B(9,0),
∴AB=|9+3|=12,
∵點(diǎn)D、E分別是AC、BC的中點(diǎn),
∴DE是△ABC的中位線,
∴DE∥AB,DE=
AB=6,
∵PQ∥BC,
∴當(dāng)點(diǎn)P、點(diǎn)M在線段DE上時(shí)四邊形PQBE為平行四邊形,
∵AD+DE=5+6=11,P、M運(yùn)動(dòng)的速度均為每秒1個(gè)單位,
∴當(dāng)5≤t<11時(shí),四邊形PQBE為平行四邊形;
∵四邊形PQBM為菱形,
∴PQ∥BM,
∵PQ∥BE,
∴M、E重合,
∵DE=6,
∴當(dāng)t=6時(shí),四邊形PQBM為菱形.
故答案為:5≤t<11;t=6;
②由題意得:AC=BC=10,AB=12,DE為△ABC的中位線,
則DE∥AB,DE=6,AD=CD=BE=CE=5
當(dāng)0<t<5時(shí),點(diǎn)P在AD上,點(diǎn)M在DE上,AP=DM=t,
∵PQ∥BC,
∴∠AQP=∠ABC
∵∠PAQ=∠CAB,
∴△PAQ∽△CAB
∴
=,即
=,則AQ=
t,BQ=12-
t,
∴S=
(12-t)•4=-t+24;
當(dāng)5≤t≤6時(shí),點(diǎn)P、點(diǎn)M均在DE上,PE=BQ=11-t,
則S=
(11-t)•4=-2t+22;
當(dāng)6<t<11時(shí),點(diǎn)P在DE上,點(diǎn)M在EB上,則BM=11-t,PE=BQ=11-t,
如圖②,過點(diǎn)M作MF⊥AB,垂足為F,則MF=
(11-t)則S=
(11-t)•(11-t)=
(11-t)2=
t2-t+.