如圖,在四邊形ABCD中,AB=BC,對(duì)角線BD平分ÐABC,P是BD上一點(diǎn),過點(diǎn)P作PM^AD,PN^CD,垂足分別為M、N.
(1)求證:ÐADB=ÐCDB;
(2)若ÐADC=90°,求證:四邊形MPND是正方形.
(1)證明見解析;(2)證明見解析.
【解析】
試題分析:(1)根據(jù)角平分線的性質(zhì)和全等三角形的判定方法證明△ABD≌△CBD,由全等三角形的性質(zhì)即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的條件可得四邊形MPND是矩形,再根據(jù)兩邊相等的四邊形是正方形即可證明四邊形MPND是正方形.
試題解析:(1)∵BD平分ÐABC,∴ÐABD=ÐCBD.
又∵BA=BC,BD=BD,∴△ABD ≌△CBD(SAS).∴ÐADB=ÐCDB.
(2)∵PM^AD,PN^CD,∴ÐPMD=ÐPND=90°.
又∵ÐADC=90°,∴四邊形MPND是矩形.
∵ÐADB=ÐCDB,PM^AD,PN^CD,∴PM=PN. ∴四邊形MPND是正方形.
考點(diǎn):1.全等三角形的判定和性質(zhì);2.正方形的判定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com