如圖,傘不論張開還是收緊,傘柄AP始終平分同一平面內(nèi)兩條傘架所成的角∠BAC,當(dāng)傘收緊時,動點D與點M重合,且點A,E,D在同一條直線上。已知部分傘架的長度如下(單位:cm):

傘架

DE

DF

AE

AF

AB

AC

長度

36

36

36

36

86

86

(1)求AM的長;

(2)當(dāng)∠BAC=104°時,求AD的長(精確到1cm)。

備用數(shù)據(jù):sin52°=0.7880,cos52°=0.6157,tan52°=1.2799。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我國的紙傘工藝十分巧妙,如圖,傘不論張開還是縮攏,△AED與△AFD始終保持全等,因此傘柄AP始終平分同一平面內(nèi)兩條傘骨所成的角∠BAC,從而保證傘圈D能沿著傘柄滑動.你知道△AED≌△AFD的理由嗎?(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•紹興)如圖,傘不論張開還是收緊,傘柄AP始終平分同一平面內(nèi)兩條傘架所成的角∠BAC,當(dāng)傘收緊時,結(jié)點D與點M重合,且點A、E、D在同一條直線上,已知部分傘架的長度如下:單位:cm
傘架 DE DF AE AF AB AC
長度 36 36 36 36 86 86
(1)求AM的長.
(2)當(dāng)∠BAC=104°時,求AD的長(精確到1cm).
備用數(shù)據(jù):sin52°=0.788,cos52°=0.6157,tan52°=1.2799.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我國的紙傘工藝十分巧妙.如圖,傘不論張開還是縮攏,傘柄AP始終平分同一平面內(nèi)兩條傘骨所成的角∠BAC,從而保證傘圈D能沿著傘柄滑動.為了證明這個結(jié)論,我們的依據(jù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(浙江紹興卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,傘不論張開還是收緊,傘柄AP始終平分同一平面內(nèi)兩條傘架所成的角∠BAC,當(dāng)傘收緊時,結(jié)點D與點M重合,且點A、E、D在同一條直線上,已知部分傘架的長度如下:單位:cm

傘架
DE
DF
AE
AF
AB
AC
長度
36
36
36
36
86
86
(1)求AM的長.
(2)當(dāng)∠BAC=104°時,求AD的長(精確到1cm).
備用數(shù)據(jù):sin52°=0.788,cos52°=0.6157,tan52°=1.2799.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(浙江紹興卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,傘不論張開還是收緊,傘柄AP始終平分同一平面內(nèi)兩條傘架所成的角∠BAC,當(dāng)傘收緊時,結(jié)點D與點M重合,且點A、E、D在同一條直線上,已知部分傘架的長度如下:單位:cm

傘架   DE     DF     AE     AF     AB     AC

長度   36     36     36     36     86     86

(1)求AM的長.

(2)當(dāng)∠BAC=104°時,求AD的長(精確到1cm).

備用數(shù)據(jù):sin52°=0.788,cos52°=0.6157,tan52°=1.2799.

 

查看答案和解析>>

同步練習(xí)冊答案