【題目】在正方形ABCD中,E,F(xiàn)分別為BC,CD的中點(diǎn),AE與BF相交于點(diǎn)G.
(1)如圖1,求證:AE⊥BF;
(2)如圖2,將△BCF沿BF折疊,得到△BPF,延長(zhǎng)FP交BA的延長(zhǎng)線于點(diǎn)Q,若AB=4,求QF的值
【答案】
(1)證明:
∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點(diǎn),
∴CF=BE,
在△ABE和△BCF中,
∴Rt△ABE≌Rt△BCF(SAS),
∴∠BAE=∠CBF,
又∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠BGE=90°,
∴AE⊥BF;
(2)解:
∵將△BCF沿BF折疊,得到△BPF,
∴FP=FC,∠PFB=∠BFC,∠FPB=90°,
∵CD∥AB,
∴∠CFB=∠ABF,
∴∠ABF=∠PFB,
∴QF=QB,
設(shè)QF=x,PB=BC=AB=4,CF=PF=2,
∴QB=x,PQ=x﹣2,
在Rt△BPQ中,
∴x2=(x﹣2)2+42,
解得:x=5,
即QF=5.
【解析】(1)首先依據(jù)正方形的性質(zhì)可得到∠ABE=∠BCF,BC=CD,然后再依據(jù)中點(diǎn)的定義得到CF=BE,接下來(lái),由SAS可證明△ABE≌△BCF,再利用角的關(guān)系求得∠BGE=90°,即可證明AE⊥BF;
(2)由折疊的性質(zhì)可得到FP=FC,∠PFB=∠BFC,∠FPB=90,然后再依據(jù)等角對(duì)等邊的性質(zhì)可得到QF=QB,設(shè)QF=x,在Rt△BPQ中,利用勾股定理可建立關(guān)于x的方程解方程求出x的值即可.
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)和翻折變換(折疊問題)的相關(guān)知識(shí)點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形;折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市規(guī)定:出租車起步價(jià)允許行駛的最遠(yuǎn)路程為3km,超過3km的部分每千米另收費(fèi),甲說(shuō):“我乘這種出租車走了9km,付了14元.”乙說(shuō):“我乘這種出租車走了13千米,付了20元”.請(qǐng)你算出這種出租車的起步價(jià)是多少元?超過3km后,每千米的車費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)均為1)依次進(jìn)行位似變換、軸對(duì)稱變換和平移變換后得到△A3B3C3 .
(1)△ABC與△A1B1C1的位似比等于;
(2)在網(wǎng)格中畫出△A1B1C1關(guān)于y軸的軸對(duì)稱圖形△A2B2C2;
(3)請(qǐng)寫出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設(shè)點(diǎn)P(x,y)為△ABC內(nèi)一點(diǎn),依次經(jīng)過上述三次變換后,點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)(x1 , y1),(x2 , y2),(x3 , y3)都是反比例函數(shù)y=﹣ 圖象上的點(diǎn),并且y1<0<y2<y3 , 則下列各式中正確的是( )
A.x1<x2<x3
B.x1<x3<x2
C.x2<x1<x3
D.x2<x3<x1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是﹣1,求另一個(gè)根及 k 值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD和正方形CEFG邊長(zhǎng)分別為a和b,正方形CEFG繞點(diǎn)C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結(jié)論有( )
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校課外生物小組的試驗(yàn)園地是長(zhǎng)32m、寬20m的矩形,為便于管理,現(xiàn)要在試驗(yàn)園地開辟水平寬度均為xm的小道(圖中陰影部分).
(1)如圖1,在試驗(yàn)園地開辟一條水平寬度相等的小道,則剩余部分面積為 m2(用含x的代數(shù)式表示);
(2)如圖2,在試驗(yàn)園地開辟水平寬度相等的三條小道,其中有兩條道路相互平行. 若使剩余部分面積為570m2,試求小道的水平寬度x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形網(wǎng)格中建立平面直角坐標(biāo)系,使得,兩點(diǎn)的坐標(biāo)分別為,,過點(diǎn)作軸于點(diǎn)C,
(1)按照要求畫出平面直角坐標(biāo)系,線段,寫出點(diǎn)的坐標(biāo)__________;
(2)直接寫出以,,為頂點(diǎn)的三角形的面積___________;
(3)若線段是由線段平移得到的,點(diǎn)的對(duì)應(yīng)點(diǎn)是,寫出一種由線段得到線段的過程________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年3月全國(guó)兩會(huì)勝利召開,某數(shù)學(xué)興趣小組就兩會(huì)期間出現(xiàn)頻率最高的熱詞:A脫貧攻堅(jiān).B.綠色發(fā)展.C.自主創(chuàng)新.D.簡(jiǎn)政放權(quán)等熱詞進(jìn)行了抽樣調(diào)查,每個(gè)同學(xué)只能從中選擇一個(gè)“我最關(guān)注”的熱詞,如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了名同學(xué);
(2)條形統(tǒng)計(jì)圖中,m= , n=;
(3)扇形統(tǒng)計(jì)圖中,熱詞B所在扇形的圓心角的度數(shù)是;
(4)從該校學(xué)生中隨機(jī)抽取一個(gè)最關(guān)注熱詞D的學(xué)生的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com