如圖,△ABC中,∠BAC=90°,AC=2,AB=,△ACD是等邊三角形.
(1)求∠ABC的度數(shù).
(2)以點(diǎn)A為中心,把△ABD順時(shí)針旋轉(zhuǎn)60°,
畫(huà)出旋轉(zhuǎn)后的圖形.
(3)求BD的長(zhǎng)度.
【解析】(1)利用正切的知識(shí)可得出答案.
(2)根據(jù)旋轉(zhuǎn)角度、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向找出各點(diǎn)的對(duì)稱(chēng)點(diǎn),順次連接即可;
(3)根據(jù)旋轉(zhuǎn)的性質(zhì)可得△ACE≌△ADB,從而確定∠EBC=90°,然后利用勾股定理即可解答
(1)Rt△ABC中∴-------------------4分
(2)如圖-----------------3分
(3) 方法1 : 連接BE.
由(2)知:△ACE≌△ADB
∴AE=AB,∠BAE=60°,BD=EC
∴∠EBC=90°又BC=2AC=4
∴Rt△EBC中,EC=
∴---------------------------------------- 5分
方法2:過(guò)點(diǎn)D作DF⊥BC,交BC延長(zhǎng)線(xiàn)于點(diǎn)F,
則求得DF= BF =5,
∴ 按方法1 相應(yīng)給分
方法3:過(guò)點(diǎn)D作DG⊥BA,交BA延長(zhǎng)線(xiàn)于點(diǎn)G,按照方法1給分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com