如圖,在直線l上取一點A,順次截取AB=BC=a,CD=b

那么

AC=AB+(  )=a+(  )=(  ),

AC=(  )-CD=(  )-b=(  ),

BC=AD-(  )-(  )=(  )-(  )-(  )=(  ).

答案:略
解析:

解 AC=AB(BC)=a(a)=2a,

AC=(AD)CD=(aab)b=2a,

BC=AD(AB)(CD)=(aab)ab=a


提示:

線段的和差與它們長度的和差是一致的.由圖上可直觀地看到.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

24、如圖,為了確定一條經(jīng)過點D且與直線AB平行的直線,小明同學在直線AB上取一點C,在直線AB外取一點E,恰好量得∠2=80°,∠D=50°,∠1=∠3,這時,小明說AB與DE平行了,他說得對嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面坐標系中有一正三角形ABC,A(-8,0)、B(8,0),直線l經(jīng)過原點O及BC的中點D,另一動直線a平行于y軸,從原點出發(fā),以每秒1個單位長度的速度沿x軸向右平移,直線a分別交線段BC、直線l于點E、F,以EF為邊向左側(cè)作等邊△EFG,設(shè)△EFG與△ABC重疊部分的面積為S(平方單位),當點G落在y軸上時,a停止運動,設(shè)直線a的運動時間為t(秒).
(1)直接寫出:C點坐標
 
,直線l的解析式:
 

(2)請用含t的代數(shù)式表示線段EF;
(3)求出S關(guān)于t的函數(shù)關(guān)系式及t的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•順義區(qū)二模)問題:如果存在一組平行線a∥b∥c,請你猜想是否可以作等邊三角形ABC使其三個頂點分別在a、b、c上?
小明同學的解答如下:如圖1所示,過點A作AM⊥b于M,作∠MAN=60°,且AN=AM,過點N作CN⊥AN交直線c于點C,在直線b上取點B使BM=CN,則△ABC為所求.

(1)請你參考小明的作法,在圖2中作一個等腰直角三角形DEF使其三個頂點分別在a、b、c上,點D為直角頂點;
(2)若直線a、b之間的距離為1,b、c之間的距離為2,則在圖2中,S△DEF=
5
5
,在圖1中AC=
2
3
21
2
3
21

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知直線l:y=-x+m(m≠0)x軸、y軸于A、B兩點,點C、M分別在

線段OA、AB上,且OC=2CA,AM=2MB,連接MC,將△ACM繞點M

旋轉(zhuǎn)180°,得到△FEM,則點E在y軸上, 點F在直線l上;取線段EO中

點N,將ACM沿MN所在直線翻折,得到△PMG,其中P與A為對稱點.記:

過點F的雙曲線為6ec8aac122bd4f6e,過點M且以B為頂點的拋物線為6ec8aac122bd4f6e,過點P且以M

為頂點的拋物線為6ec8aac122bd4f6e.(1) 如圖,當m=6時,①直接寫出點M、F的坐標,

②求6ec8aac122bd4f6e6ec8aac122bd4f6e的函數(shù)解析式;

(2)當m發(fā)生變化時, ①在6ec8aac122bd4f6e的每一支上,y隨x的增大如何變化?請說明理由。

                      ②若6ec8aac122bd4f6e、6ec8aac122bd4f6e中的y都隨著x的增大而減小,寫出x的取值范圍。

6ec8aac122bd4f6e
 


查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知直線l:y=-x+m(m≠0)x軸、y軸于A、B兩點,點C、M分別在

線段OA、AB上,且OC=2CA,AM=2MB,連接MC,將△ACM繞點M

旋轉(zhuǎn)180°,得到△FEM,則點E在y軸上, 點F在直線l上;取線段EO中

點N,將ACM沿MN所在直線翻折,得到△PMG,其中P與A為對稱點.記:

過點F的雙曲線為,過點M且以B為頂點的拋物線為,過點P且以M

為頂點的拋物線為.

(1) 如圖10,當m=6時,①直接寫出點M、F的坐標,

②求、的函數(shù)解析式;

(2)當m發(fā)生變化時, ①在的每一支上,y隨x的增大如何變化?請說明理由。

                      ②若、中的y都隨著x的增大而減小,寫出x的取值范圍。

查看答案和解析>>

同步練習冊答案